Skip to main content

Instruments for Observations of Radioactivities

  • Chapter
  • First Online:
  • 816 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 453))

Abstract

This chapter describes key tools used to observe cosmic radioactivity including astronomical methods, laboratory measurements of meteorites and detection of Galactic cosmic rays. Cosmic nucleosynthesis, that is, the creation of new elements including radioactive isotopes, occurs in the most energetic, often explosive, sites in the universe. To observe these targets and processes in the light of high-energy photons, which are emitted in nuclear transitions and particle interactions, sensors for photon energies from around 100 keV to more than 10 MeV have been developed and employed on satellites and balloon platforms, outside the Earth’s atmosphere, which is opaque to this radiation. The basic interactions for such photons are the photoelectric effect, Compton scattering, and pair creation. Typical examples for instrument designs are described in the first section of this chapter, followed by a presentation of successful missions since the 1980s (SMM, Compton Gamma-Ray Observatory CGRO), then currently operational missions (INTEGRAL, NuStar, Fermi), and perspectives for future telescopes with advances in technology. The second section addresses radioactivities in meteorite samples, which are generally measured by means of mass spectrometry. The most widely used methods are thermal ionisation (TIMS), multi-collector inductively-coupled-plasma (MC-ICPMS), secondary ion- (SIMS), and resonance ionisation mass spectrometry (RIMS). Parent and daughter nuclides can be measured on a variety of sample sizes, with precision depending on the size of the sample and concentrations of the elements of interest. The ultimate attainable precision is generally limited by the number of atoms in a given sample. New developments in RIMS, accelerator-based SIMS, and laser-assisted atom-probe tomography all hold promise for pushing meteoritic measurements to higher sensitivity and smaller spatial scales. Galactic cosmic rays are addressed in a third section. These are analysed by a variety of instruments from the ground, on high altitude balloons, or on spacecraft. Basic principles are discussed as well as specific experiments, including the Pierre Auger Observatory, the Cosmic Ray Isotope Spectrometer on the ACE spacecraft, TIGER, and PAMELA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi RU, Abu-Zayyad T, Amann JF et al (2004) Phys Rev Lett 92:151101

    Article  ADS  Google Scholar 

  • Abbasi RU, Abu-Zayyad T, Allen M et al (2008) Phys Rev Lett 100:101101

    Article  ADS  Google Scholar 

  • Accardo L, Aguilar M, Aisa D et al (2014) Phys Rev Lett 113:121101

    Article  ADS  Google Scholar 

  • Adriani O, Barbarino GC, Bazilevskaya GA et al (2009) Nature 458:607

    Article  ADS  Google Scholar 

  • Aguilar M, Alberti G, Alpat B et al (2013) Phys Rev Lett 110:141102

    Article  ADS  Google Scholar 

  • Atwood WB, Abdo AA, Ackermann M et al (2009) Astrophys J 697:1071

    Article  ADS  Google Scholar 

  • Ave M, Boyle PJ, Gahbauer F et al (2008) Astrophys J 678:262

    Article  ADS  Google Scholar 

  • Barwick SW, Beatty JJ, Bhattacharyya A et al (1997) Astrophys J 482:L191

    Article  ADS  Google Scholar 

  • Binns WR, Israel MH, Christian, ER et al (2016) Science 352:677

    Article  ADS  Google Scholar 

  • Blanford GE, Friedlander MW, Klarmann J et al (1969) Phys Rev Lett 23:338

    Article  ADS  Google Scholar 

  • Boggs S, Kurfess J, Ryan J et al (2006) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6266

    Google Scholar 

  • Brennecka GA, Weyer S, Wadhwa M et al (2010) Science 327:449

    Article  ADS  Google Scholar 

  • Budde G, Burkhardt C, Brennecka GA et al (2016) Earth Planet Sci Lett 454:293

    Article  ADS  Google Scholar 

  • De Angelis A, Tatischeff V, Tavani M et al (2017) Exp Astron 44:25

    Article  ADS  Google Scholar 

  • Diehl R, Siegert T, Greiner J et al (2017) ArXiv e-prints, 1710.10139

    Google Scholar 

  • Fleisher RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press, Berkeley

    Google Scholar 

  • Forrest DJ, Chupp EL, Ryan JM et al (1980) Sol Phys 65:15

    Article  ADS  Google Scholar 

  • George JS, Lave KA, Wiedenbeck ME et al (2009) Astrophys J 698:1666

    Article  ADS  Google Scholar 

  • Gray CM (1974) Nature 251:495

    Article  ADS  Google Scholar 

  • Greiner J, Iyudin A, Kanbach G et al (2009) Exp Astron 23:91

    Article  ADS  Google Scholar 

  • Groopman EE, Grabowski KS, Fahey AJ, Koop L (2017) J Anal At Spectrom 32:2153

    Article  Google Scholar 

  • Harrison FA, Craig WW, Christensen FE et al (2013) Astrophys J 770:103

    Article  ADS  Google Scholar 

  • Heck PR, Marhas KK, Hoppe P et al (2007) Astrophys J 656:1208

    Article  ADS  Google Scholar 

  • Heck PR, Stadermann FJ, Isheim D et al (2014) Meteorit Planet Sci 49:453

    Article  ADS  Google Scholar 

  • Kanbach G, Bertsch DL, Favale A et al (1989) Space Sci Rev 49:69

    Article  ADS  Google Scholar 

  • Kanbach G, Andritschke R, Bloser PF et al (2003). In: Truemper JE, Tananbaum HD (eds) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 4851, pp 1209–1220

    Google Scholar 

  • Kierans CA, Boggs SE, Chiu J-L et al (2017) ArXiv e-prints, 1701.05558

    Google Scholar 

  • Kita NT, Ushikubo T, Knight KB et al (2012) Geochim Cosmochim Acta 86:37

    Article  ADS  Google Scholar 

  • Knie K, Korschinek G, Faestermann T et al (2004) Phys Rev Lett 93:171103

    Article  ADS  Google Scholar 

  • Knödlseder J (2007) Adv Space Res 40:1263

    Article  ADS  Google Scholar 

  • Kodolányi J, Stephan T, Trappitsch R et al (2018) Geochim Cosmochim Acta 221:127

    Article  ADS  Google Scholar 

  • Lee D, Halliday AN (1995) Nature 378:771

    Article  ADS  Google Scholar 

  • Lee T, Papanastassiou DA, Wasserburg GJ (1976) Geo Res Lett 3:41

    Article  ADS  Google Scholar 

  • Liu N, Stephan T, Boehnke P et al (2017) Astrophys J 844:L12

    Article  ADS  Google Scholar 

  • Liu M-C, McKeegan KD, Harrison TM, Jarzebinski G, Vltava L (2018) Int J Mass Spectrom 424:1

    Article  Google Scholar 

  • Longair MS (1992) High energy astrophysics (1992) Vol. 1: Particles, photons and their detection (High energy astrophysics, by MS Longair. Cambridge University Press, Cambridge, pp. 436. ISBN 0521387736

    Google Scholar 

  • Matzel JEP, Ishii HA, Joswiak D et al (2010) Science 328:483

    Article  ADS  Google Scholar 

  • Matzel JEP, Ishii HA, Joswiak D, Brownlee D, Hutcheon ID (2014) Lunar and Planetary Institute Technical Report. Lunar and planetary science conference, vol 45, p 1645

    ADS  Google Scholar 

  • McEnery JE (2017) AAS/High energy astrophysics division, vol. 16. AAS/High Energy Astrophysics Division, 103.13

    Google Scholar 

  • McKeegan KD, Kallio AP, Heber V et al (2009) Lunar and Planetary Institute Science conference abstracts. Lunar and Planetary Institute Science conference abstracts, vol 40, p 2494

    ADS  Google Scholar 

  • Nagashima K, Krot AN, Yurimoto H (2004) Nature 428:921

    Article  ADS  Google Scholar 

  • NCT Collaboration, Boggs S, Chang Y (2007) Adv Space Res 40:1281

    Google Scholar 

  • Nguyen AN, Zinner E (2004) Science 303:1496

    Article  ADS  Google Scholar 

  • Nguyen AN, Nittler LR, Stadermann FJ, Stroud RM, Alexander CMO (2010) Astrophys J 719:166

    Article  ADS  Google Scholar 

  • Nicolussi GK, Davis AM, Pellin MJ et al (1997) Science 277:1281

    Article  ADS  Google Scholar 

  • Nittler LR, Alexander CMO’D, Gao X, Walker RM, Zinner EK (1994) Nature 370:443

    Article  ADS  Google Scholar 

  • Nittler LR, Hoppe P, Stroud RM (2007) Lunar and planetary science conference 38, Abstract #2321

    Google Scholar 

  • Rauch BF, Link JT, Lodders K et al (2009) Astrophys J 697:2083

    Article  ADS  Google Scholar 

  • Savina MR, Davis AM, Tripa CE et al (2004) Science 303:649

    Article  ADS  Google Scholar 

  • Schönfelder V, Aarts H, Bennett K et al (1993) Astrophys J Suppl 86:657

    Article  ADS  Google Scholar 

  • Stephan T, Trappitsch R, Davis AM et al (2016) Int J Mass Spectrom 407:1

    Article  Google Scholar 

  • Stephan T, Trappitsch R, Davis AM et al (2018) Geochim Cosmochim Acta 221:109

    Article  ADS  Google Scholar 

  • Stone EC, Cohen CMS, Cook WR et al (1998) Space Sci Rev 86:285

    Article  ADS  Google Scholar 

  • Takahashi T, Awaki A, Dotani T et al (2004). In: Hasinger G, Turner MJL (eds) Proceedings of SPIE. UV and gamma-ray space telescope systems, vol 5488, pp 549–560

    Google Scholar 

  • Takahashi T, Kelley R, Mitsuda K et al (2009). In: Kawai N, Mihara T, Kohama M, Suzuki M (eds) Astrophysics with all-sky X-ray observations, p 356

    Google Scholar 

  • Takeda M, Sakaki N, Honda K et al (2003) Astropart Phys 19:447

    Article  ADS  Google Scholar 

  • The Pierre Auger Collaboration, Abraham J, Abreu P et al (2007) Science 318:938

    Google Scholar 

  • Trappitsch R, Stephan T, Savina MR et al (2018) Geochim Cosmochim Acta 221:87

    Article  ADS  Google Scholar 

  • Vedrenne G, Roques J, Schönfelder V et al (2003) Astron Astrophys 411:L63

    Article  ADS  Google Scholar 

  • Vestrand WT, Share GH, Murphy RJ et al (1999) Astrophys J Suppl 120:409

    Article  ADS  Google Scholar 

  • Villeneuve J, Chaussidon M, Libourel G (2009) Science 325:985

    Article  ADS  Google Scholar 

  • Weidenspointner G, Harris MJ, Sturner S, Teegarden BJ, Ferguson C (2005) Astrophys J Suppl 156:69

    Article  ADS  Google Scholar 

  • Young ED, Simon JI, Galy A et al (2005) Science 308:223

    Article  ADS  Google Scholar 

  • Zinner E, Nittler LR, Hoppe P et al (2005) Geochim Cosmochim Acta 69:4149

    Article  ADS  Google Scholar 

  • Zych AD, O’Neill TJ, Bhattacharya D et al (2006) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Nittler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanbach, G., Nittler, L. (2018). Instruments for Observations of Radioactivities. In: Diehl, R., Hartmann, D., Prantzos, N. (eds) Astrophysics with Radioactive Isotopes. Astrophysics and Space Science Library, vol 453. Springer, Cham. https://doi.org/10.1007/978-3-319-91929-4_10

Download citation

Publish with us

Policies and ethics