Skip to main content

Nanotechnology Pathways to Next-Generation Photovoltaics

  • Chapter
  • First Online:
Semiconductor Nanotechnology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this book chapter, an overview is given of the latest advances and central challenges in photovoltaics research, and the role of nanotechnology in improving performance. Over the long term, nanotechnology is expected to enable improvements throughout the energy sector, but the most striking near- to midterm opportunities may be in lower-cost, higher-efficiency conversion of sunlight to electric power. Nanostructures in solar cells have multiple approaches by which they can improve photovoltaic performance: (1) new physical approaches in order to reach thermodynamic limits, (2) allow solar cells to more closely approximate their material-dependent thermodynamic limits, and (3) provide new routes for low-cost fabrication by self-assembly or design of new materials. We focus primarily on the first two approaches which have the goal of increasing efficiency. The limits of solar cell efficiencies are discussed, and several different approaches are described that circumvent long-held physical assumptions and lead beyond first- and second-generation solar cell technologies. The role of nanotechnology in specific cell technologies is reviewed, including its role in improving light-trapping and the light collection properties of solar cells, as well as dye-sensitized solar cells and perovskite solar cells, and recent advances in nanowire solar cells. Special emphasis is given on novel nanostructure-based devices based on advanced concepts such as hot-carrier cells, and multiexciton generation, which have the theoretical basis to realize high-efficiency energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Photovoltaics Report (PDF). Fraunhofer ISE. 12 July 2017

    Google Scholar 

  2. Yoshikaw K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:1–8

    Google Scholar 

  3. https://www.altadevices.com/

  4. “First solar builds the highest efficiency thin film PV cell on record”. firstsolar.com

  5. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  6. Timmreck R, Meyer T, Gilot J, Seifert H, Nueller T, Furlan A, Wienk MM, Wynands D, Hohl-Ebinger J, Warta W, Janssen RAJ, Riede M, Leo K (2015) Characterizaion of tandem organic solar cells. Nat Photonics 9:478–479

    Article  CAS  Google Scholar 

  7. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    Article  CAS  Google Scholar 

  8. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  9. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  CAS  Google Scholar 

  10. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  11. de Vos A (1992) Endoreversible thermodynamics of solar energy conversion. Oxford University Press, Oxford

    Google Scholar 

  12. Kolodinski S, Werner JH, Wittchen T, Queisser HJ (1993) Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl Phys Lett 63:2405

    Article  CAS  Google Scholar 

  13. Schaller R, Klimov V (2004) High efficiency carrier multiplication in pbse nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    Article  CAS  Google Scholar 

  14. Ross RT, Nozik AJ (1982) Efficiency of hot-carrier solar energy converters. J Appl Phys 53:3813

    Article  CAS  Google Scholar 

  15. Würfel P (1997) Solar energy conversion with hot electrons from impact ionization. Sol Energy Mater Sol Cells 46:43

    Article  Google Scholar 

  16. Würfel P, Brown AS, Humphrey TE, Green MA (2005) Particle conservation in the hot-carrier solar cell. Prog Photovolt Res Appl 13:277

    Article  Google Scholar 

  17. Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoon H, Karam N (2009) III–V multijunction solar cells for concentrating photovoltaics. Energy Environ Sci 2:174–192

    Article  CAS  Google Scholar 

  18. Press Release, Fraunhofer Institute for Solar Energy Systems, 1 December 2014 (accessed at http://www.ise.fraunhofer.de/en/ press‐and‐media/press‐releases/press‐releases‐2014/new‐world‐record‐for‐solar‐cell ‐efficiency‐at‐46‐percent on 7 December 2014). Soitec record 

    Google Scholar 

  19. Zhang C, Kim Y, Faleev NN, Honsberg CB (2017) Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy. J Cryst Growth 475(1):83–87

    Article  CAS  Google Scholar 

  20. Weyers M, Sato M, Ando H (1992) Red shift of photoluminescence and absorption in dilute GaAsN alloy layers. Jpn J Appl Phys 31(pt. 2, 7A):L853–L955

    Article  CAS  Google Scholar 

  21. Luque A, Martí A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78:5014–5017

    Article  CAS  Google Scholar 

  22. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–60

    Article  Google Scholar 

  23. Cho AY, Arthur JR (1975) Molecular beam epitaxy. Prog Solid State Chem 10:157–191

    Article  Google Scholar 

  24. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39:R387

    Article  CAS  Google Scholar 

  25. Samuelson L (2003) Self-forming nanoscale devices. Mater Today 6:22–31

    Article  CAS  Google Scholar 

  26. Björk MT, Ohlsson BJ, Sass T, Persson AI, Thelander C, Magnusson MH, Deppert K, Wallenberg LR, Samuelson L (2002) One-dimensional steeplechase for electrons realized. Nano Lett 2:87–89

    Article  CAS  Google Scholar 

  27. Björk MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, Wallenberg LR, Samuelson L (2002) Nanowire resonant tunneling diodes. Appl Phys Lett 81:4458–4460

    Article  CAS  Google Scholar 

  28. Thelander C, Martensson T, Björk MT, Ohlsson BJ, Larsson MW, Wallenberg LR, Samuelson L (2003) Single-electron transistors in heterostructure nanowires. Appl Phys Lett 83:2052–2054

    Article  CAS  Google Scholar 

  29. Fuhrer A, Fasth C, Samuelson L (2007) Single electron pumping in InAs nanowire double quantum dots. Appl Phys Lett 91:052109

    Article  CAS  Google Scholar 

  30. Fuhrer A, Froberg LE, Pedersen JN, Larsson MW, Wacker A, Pistol ME, Samuelson L (2007) Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett 7:243–246

    Article  CAS  Google Scholar 

  31. Björk MT, Fuhrer A, Hansen AE, Larsson MW, Fröberg LE, Samuelson L (2005) Tunable effective g factor in InAs nanowire quantum dots. Phys Rev B 72:201307

    Article  CAS  Google Scholar 

  32. Chandra N, Tracy CJ, Cho J-H, Picraux ST, Hathwar R, Goodnick SM (2015) Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates. J Appl Phys 118:024301–024307

    Article  CAS  Google Scholar 

  33. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  34. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, Chichester

    Google Scholar 

  35. Ban K-Y, Bremner SP, Liu G, Dahal SN, Dippo PC, Norman AG, Honsberg CB (2010) Use of a GaAsSb buffer layer for the formation of small, uniform, and dense InAs quantum dots. Appl Phys Lett 96:183101

    Article  CAS  Google Scholar 

  36. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  37. Seok SI, Grätzel M, Park N-G (2018) Methodologies toward Highly Efficient Perovskite Solar Cells. Small 14:1704177

    Google Scholar 

  38. Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am A 72:899–907

    Article  Google Scholar 

  39. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  40. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  41. Vulic N, Choi J-Y, Honsberg CB, Goodnick SM (2015) Silica nanosphere lithography defined light trapping structures for ultra-thin Si photovoltaics. MRS Proc 1770:31–36

    Article  CAS  Google Scholar 

  42. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater Lett 9:239–244

    Article  CAS  Google Scholar 

  43. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105

    Article  CAS  Google Scholar 

  44. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93(12):121904

    Article  CAS  Google Scholar 

  45. Tian B et al (2007) Coaxial silicon nanowires nanoelectronic power sources. Nature 449:889

    Article  CAS  Google Scholar 

  46. Garnett EC, Peidong Y (2008) Silicon nanowire radial p-n junctions solar cells. J Am Chem Soc 130(29):9224–9225

    Article  CAS  Google Scholar 

  47. Tang J, Huo Z, Brittman S, Gao H, Yang P (2011) Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6(9):568–572

    Article  CAS  Google Scholar 

  48. Kempa TJ, Kim SK, Day RW, Park HG, Nocera DC, Lieber CM (2013) Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J Am Chem Soc 135(49):18354–18357

    Article  CAS  Google Scholar 

  49. Treu J, Stettner T, Watzinger M, Morkötter S, Döblinger M, Matich S, Saller K, Bichler M, Abstreiter G, Finley JJ, Stangle J, Koblmüller G (2015) Lattice-matched InGaAs-InAlAs core-shell nanowires with improved luminescence and photoresponse properties. Nano Lett 15(5):3533–3540

    Article  CAS  Google Scholar 

  50. Popescu B, Popescu D, Luppina P, Julian T, Koblmüller G, Lugli P, Goodnick S (2015) Modeling and simulation of InGaAs nanowire solar cells. In Proceedings of the IEEE International Conference on Nanotechnology, Rome, Italy, pp 728–231

    Google Scholar 

  51. Chuang C, Sedgwick FG, Chen R, Ko WS, Moewe M, Ng W, Tran T-TD, Chang-Hasnain C (2010) GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. Nano Lett 11(2):385–390

    Article  CAS  Google Scholar 

  52. Chen R, Tran T-TD, Ng KW, Ko WS, Chuang LC, Sedgwick FG, Chang-Hasnain C (2011) Nanolasers grown on silicon. Nat Photonics 5(3):170–175

    Article  CAS  Google Scholar 

  53. Colombo C, Heiss M, Gratzel M, Fontcuberta I Morral A (2009) Gallium arsenide pin radial structures for photovoltaic applications. Appl Phys Lett 94(17):173108

    Article  CAS  Google Scholar 

  54. Krogstrup P et al (2013) Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat Photonics 7(4):206–310

    Article  CAS  Google Scholar 

  55. Mariani G et al (2011) Patterned radial GaAs nanopillar solar cells. Nano Lett 11(6):2490–2494

    Article  CAS  Google Scholar 

  56. Wallentin J, Anttu N, Asoli D, Huffman M, Magnusson IAMH, Siefer G, Fuss-Kailuweit P, Dimroth F, Witzigmann B, Xu HQ, Samuelson L, Deppert K, Borgström MT (2013) InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123):1057–1060

    Article  CAS  Google Scholar 

  57. Åberg I, Vescovi G, Asoli D, Naseem U, Gilboy JP, Sundvall C, Dahlgren A, Svensson KE, Anttu N, Björk MT, Samuelson L (2016) A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J Photovolt 6(1):185–190

    Article  Google Scholar 

  58. van Dam D, van Hoof NJJ, Cui Y, van Veldhovern PJ, Bakkers EPAM, Rivas JG, Haverkort JEM (2016) High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self aligned indium−tin−oxide mie scatterers. ACS Nano 10:11414–11419

    Article  CAS  Google Scholar 

  59. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92(18):186601

    Article  CAS  Google Scholar 

  60. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5(5):865–871

    Article  CAS  Google Scholar 

  61. Nozick AJ (2005) Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorganic Chem 44:6893

    Article  CAS  Google Scholar 

  62. Shabaev A, Efros AL, Nozik AJ (2006) Multiexciton generation by a single photon in nanocrystals. Nano Lett 6:8

    Article  CAS  Google Scholar 

  63. Schaller RD, Pietryga JM, Klimov VI (2007) Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett 7(11):3469–3476

    Article  CAS  Google Scholar 

  64. Murphy JE, Beard MC, Norman AG, Phillip S, Johnson JCA, Pingrong M, Olga IY, Ellingson RJ, Nozik AJ (2006) PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J Am Chem Soc 128(10):3241–3247

    Article  CAS  Google Scholar 

  65. Werner JH, Kolodinski S, Queisser HJ (1994) Novel optimization principles and efficiency limits for semiconductor solar cells. Phys Rev Lett 72(24):3851–3854

    Article  CAS  Google Scholar 

  66. Beard MC, Knutsen KP, Yu P, Luther JM, Song Q, Metzger WK, Ellingson RJ, Nozik AJ (2007) Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 7(8):2506–2512

    Article  CAS  Google Scholar 

  67. Vos A d, Desoete B (1998) On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol Energy Mater Sol Cells 51(3):413–424

    Article  Google Scholar 

  68. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, Beard MC (2012) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–1533

    Article  CAS  Google Scholar 

  69. Cunningham PD, Boercker JE, Foos EE, Lumb MP, Smith AR, Tischler JG, Melinger JS (2011) Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett 11(8):3476–3481

    Article  CAS  Google Scholar 

  70. Hathwar R, Saraniti M, Goodnick SM (2015) Energy relaxation and non-linear transport in InAs nanowires. J Phys Conf Ser 647:012039

    Article  CAS  Google Scholar 

  71. Ross RT, Nozik AJ (1982) Efficiency of hot-carrier solar energy converters. J Appl Phys 53:3813–3818

    Article  CAS  Google Scholar 

  72. Landsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys 51:R1

    Article  CAS  Google Scholar 

  73. Würfel P (1997) Solar energy conversion with hot electrons from impact ionization. Sol Energy Mater Sol Cells 46:43–52

    Article  Google Scholar 

  74. Würfel P, Brown AS, Humphrey TE, Green MA (2005) Particle conservation in the hot-carrier solar cell. Prog Photovolt Res Appl 13:277

    Article  Google Scholar 

  75. Conibeer G, Green MA, Corkish R, Cho Y, Chob E, Jiang C, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A, Lind K (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512:654

    Article  CAS  Google Scholar 

  76. Pelouch WS, Ellingson RJ, Powers PE, Tang CL, Szmyd DM, Nozik AJ (1992) Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Phys Rev B 45:1450–1453

    Article  CAS  Google Scholar 

  77. Tsen KS, Wald KR, Ruf T, Yu PY, Morkoc H (1991) Electron optical phonon interactions in ultrathin GaAs AlAs multiple quantum well structures. Phys Rev Lett 67:2557–2560

    Article  CAS  Google Scholar 

  78. Tsen KT, Joshi RP, Ferry DK, Botcharev A, Sverdlov B, Salvador A, Morkoc H (1996) Non-equilibrium electron distributions and phonon dynamics in wurtzite GaN. Appl Phys Lett 68:2990–2992

    Article  CAS  Google Scholar 

  79. Tsen KT, Kiang JG, Ferry DK, Morkoc H (2006) Subpicosecond time-resolved Raman studies of LO phonons in GaN: dependence on photoexcited carrier density. Appl Phys Lett 89:112111

    Article  CAS  Google Scholar 

  80. Tsen KT, Kiang JG, Ferry DK, Lu H, Schaff WJ, Lin H-W, Gwo S (2007) Direct measurements of the lifetimes of longitudinal optical phonon modes and their dynamics in InN. Appl Phys Lett 90:152107-1-3

    Article  CAS  Google Scholar 

  81. Goodnick SM, Lugli P (1992) Hot carrier relaxation in quasi-2D systems. In: Shah J (ed) Hot carriers in semiconductor microstructures: physics and applications. Academic Press, New York, pp 191–234

    Chapter  Google Scholar 

  82. Dür M, Goodnick SM, Lugli P (1996) Monte Carlo simulation of intersubband relaxation in wide, uniformly doped GaAs/AlxGa1-xAs quantum wells. Phys Rev B 54:17794

    Article  Google Scholar 

  83. Conibeer G, Patterson R, Huang L, Guillemoles J-F, König D, Shrestha S, Green MA (2010) Modelling of hot carrier solar cell absorbers. Sol Energy Mater Sol Cells 94:1516–1521

    Article  CAS  Google Scholar 

  84. Goodnick SM, Honsberg C (2012) Modeling carrier relaxation in hot carrier solar cells. Proc SPIE 8256:82560W. https://doi.org/10.1117/12.910858

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Goodnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goodnick, S.M. (2018). Nanotechnology Pathways to Next-Generation Photovoltaics. In: Goodnick, S., Korkin, A., Nemanich, R. (eds) Semiconductor Nanotechnology. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91896-9_1

Download citation

Publish with us

Policies and ethics