Skip to main content

System Characterization and Case Studies

  • Chapter
  • First Online:
Heat Storage: A Unique Solution For Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 1319 Accesses

Abstract

In this chapter, we deal with two important subjects for TES systems and applications, namely system characterization and case studies. In the system characterization, we focus on storage materials and their roles in specific applications while the focus is placed on various selected applications, under case studies, from numerous sectors at various capacities, ranging from micro- to large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

c p :

Specific heat, J/kgK

C :

Volumetric heat capacity, J/m3K

D :

Diameter, m

\( \dot{E}x \) :

The rate of exergy, W

F :

Body force, N/m3

Fo:

Fourier number

g :

Gravitational acceleration, m/s2

h :

Convective heat transfer coefficient, W/m2K

h sf :

Latent heat of fusion, J/kg

H :

Enthalpy, J

I :

Incident solar radiation, W/m2

k :

Thermal conductivity, W/mK

L :

Length of the tube, m or latent heat, J/kg

Nu:

Nusselt

p :

Pressure, Pa

Pr:

Prandtl number

r, θ :

Polar coordinates

R :

Radius, m

R :

Aspect ratio

Ra:

Rayleigh number

Re:

Reynolds number

Ste:

Stefan number

s :

Interface position, m

t :

Time, s

T :

Temperature, K or °C

u, v :

Velocity components, m/s

W :

Mass, kg

x, y :

Cartesian coordinates, m

α :

Thermal diffusivity, m2/s

β :

Thermal expansion coefficient, 1/K

ε :

Emissivity

Δ:

Difference

θ :

Dimensionless temperature

ρ :

Density (kgm−3)

μ :

Dynamic viscosity (kgm−1 s−1)

B :

Body

conv :

Convection

d :

Destruction

i :

Initial or inner

in :

Indoor or inner

l :

Liquid

m :

Melting or maximum

n :

Nucleation

o :

Dead state

out :

Outlet or outer

rad :

Radiation

ref :

Reference

s :

Solidification or solid

sf :

Solid to liquid

sur :

Surrounding

surf :

Surface

References

  • Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(2), 615–628.

    Article  Google Scholar 

  • Almahdi, M., Dincer, I., & Rosen, M. A. (2016). A new solar based multigeneration system with hot and cold thermal storages and hydrogen production. Renewable Energy, 91, 302–314.

    Article  Google Scholar 

  • Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2011). Exergy modeling of a new solar driven trigeneration system. Solar Energy, 85(9), 2228–2243.

    Article  Google Scholar 

  • Al-Sulaiman, F. A., Hamdullahpur, F., & Dincer, I. (2012). Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production. Renewable Energy, 48, 161–172.

    Article  Google Scholar 

  • AlZahrani, A. A., & Dincer, I. (2016). Performance assessment of an aquifer thermal energy storage system for heating and cooling applications. Journal of Energy Resources Technology, 138(1), 011901.

    Article  Google Scholar 

  • Arezov, A., & Niyazov, S. K. (1980). Appl. Sol. Eng., 16, 430.

    Google Scholar 

  • ASTM D1481-17. (2017). Standard test method for density and relative density (specific gravity) of viscous materials by Lipkin bicapillary pycnometer. ASTM International, West Conshohocken.

    Google Scholar 

  • ASTM D1986-14. (2014). Standard test method for determining the apparent viscosity of polyethylene wax. ASTM International, West Conshohocken.

    Google Scholar 

  • ASTM D2534-88. (2017). Standard test method for coefficient of kinetic friction for wax coatings. ASTM International, West Conshohocken.

    Google Scholar 

  • ASTM D2669-16. (2016). Standard test method for apparent viscosity of petroleum waxes compounded with additives (hot melts). ASTM International, West Conshohocken.

    Google Scholar 

  • ASTM E1269-11. (2011). Standard test method for determining specific heat capacity by differential scanning calorimetry. ASTM International, West Conshohocken.

    Google Scholar 

  • ASTM E967-08. (2014). Standard test method for temperature calibration of differential scanning calorimeters and differential thermal analyzers. ASTM International, West Conshohocken.

    Google Scholar 

  • Baille, J. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Bakr, M., van Oostrom, N., & Sommer, W. (2013). Efficiency of and interference among multiple aquifer thermal energy storage systems; A Dutch case study. Renewable Energy, 60, 53–62.

    Article  Google Scholar 

  • Balaras, C. A. (1996). The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy and Buildings, 24(1), 1–10.

    Article  Google Scholar 

  • Balducci, M. (1985). Solar agricultural greenhouse, Hag Brochure, EEC, DG 17.

    Google Scholar 

  • Barreneche, C., Solé, A., Miró, L., Martorell, I., Fernández, A. I., & Cabeza, L. F. (2013). Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochimica Acta, 553, 23–26.

    Article  Google Scholar 

  • BASF. (2018). https://www.basf.com/. Accessed 2 Jan 2018.

  • Bauer, T., Laing, D., & Tamme, R. (2010). Overview of PCMs for concentrated solar power in the temperature range 200 to 350 °C. Advances in Science and Technology, 74, 272–277 Trans Tech Publicatioens.

    Article  Google Scholar 

  • Baytorum, N. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Benli, H. (2006). Isı depolamalı cam seralarda sıcaklık değişiminin incelenmesi (in Turkish). Ph.D. Thesis. University of Fırat, Elazığ, Turkey.

    Google Scholar 

  • Benli, H., & Durmuş, A. (2009). Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Solar Energy, 83(12), 2109–2119.

    Article  Google Scholar 

  • Bonrehi, F. (1982). Proc. Conf. La Serre Solaire (p. 230). Perpignan.

    Google Scholar 

  • Bouhdgar, A., & Boulbing, A. (1990). In A. Sayigh (Ed.), Proc. Congress Energy and the Environment (p. 2325). Reading.

    Google Scholar 

  • Boulard, T., & Baille, J. (1987). Agricultural and Forest Meteorology, 32, 270.

    Google Scholar 

  • Brandstetter, A. (1987). Proc. ISES Solar World Congress (p. 3353). Hamburg.

    Google Scholar 

  • Bredenbeck, H. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Bricault, M., Jeremie, G. Paris, J., & Jackson, H. A. (1982). Proc Conf. Energex ’82 (p. 564). Regina.

    Google Scholar 

  • Campiotti, C., Camporcale, J., & Salice, R. (1988). ACTA Hortic.

    Google Scholar 

  • Carling, R. W., Kramer, C. M., Bradshaw, R. W., Nissen, D. A., Goods, S. H., Mar, R. W., et al. (1981). Molten nitrate salt technology development status report (No. SAND-80-8052). Livermore/Albuquerque: Sandia National Labs.

    Google Scholar 

  • Castellón, C., Günther, E., Mehling, H., Hiebler, S., & Cabeza, L. F. (2008). Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC—A study of different measurement procedures and their accuracy. International Journal of Energy Research, 32(13), 1258–1265.

    Article  Google Scholar 

  • Celik, A., Metin C. S., & Ezan M. A. (2017, September 13–16). Implementation of PCM with Li-Ion Battery, ULIBTK’17 21. Ulusal Isı Bilimi ve Tekniği Kongresi, Çorum.

    Google Scholar 

  • Cibsejournal. https://www.cibsejournal.com/cpd/modules/2010-04/.. Accessed 12 Nov 2017.

  • Coleparmer. https://www.coleparmer.com/i/kimble-chase-15123r-50-pycnometer-bottle-50-ml/3459074. Accessed 12 Nov 2017.

  • Damrath, D., & Von Zabeltitz, C. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Deforche. (1990, May). European Community demonstration programme in solar thermal energy, EEC.

    Google Scholar 

  • Eggers, H., & Vickermann, E. (1983). Proceedings of the 1st EEC conference on solar heating (p. 467). Amsterdam.

    Google Scholar 

  • Erek, A., Seki, Y., Ezan M. A., Turgut, A., & Cetin, L. (2015). Investigation of thermal behavior of nano-enhanced phase change materials and application in the encapsulated thermal energy storage systems. TÜBİTAK MAG Project, Number: 112M164, pp. 1–150.

    Google Scholar 

  • Esquira, I., Segal, I., & Antler, A. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Ezan, M. A. (2011). Experimental and numerical investigation of cold thermal energy storage systems. PhD thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir.

    Google Scholar 

  • Ezan, M. A., Ince, S., Seki, Y., Turgut, A., Cetin, L., & Erek, A. (2014). Improvement the thermal performance of Myristic acid. International conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2014), Orlando.

    Google Scholar 

  • Farah, J. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Farid, M., Kim, Y., Honda, T., & Kanzawa, A. (1989). The role of natural convection during melting and solidification of PCM in a vertical cylinder. Chemical Engineering Communications, 84(1), 43–60.

    Article  Google Scholar 

  • Flerking, M. (1981). Serres Solaires de Production, PIC edition. ARES.

    Google Scholar 

  • Fotiades, I. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Fotiades, I. (1988). Use of solar energy for heating of greenhouses in Cyprus. Final report to the Ministry of agriculture, Cyprus.

    Google Scholar 

  • Fourcy, A. (1981). Serres Solaires de Production, PIC edition. ARES.

    Google Scholar 

  • Fourcy, A. (1982). Proc. Conf. Solar Greenhouses (p. 133). Perpignan.

    Google Scholar 

  • Fraunhofer IFAM. (2018). https://www.ifam.fraunhofer.de. Accessed 2 Jan 2018.

  • Fraunhofer ISE. (2018). https://www.ise.fraunhofer.de. Accessed 2 Jan 2018.

  • Garcia, M. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Gebhart, B., & Mollendorf, J. C. (1977). A new density relation for pure and saline water. Deep Sea Research, 24(9), 831–848.

    Article  Google Scholar 

  • Gong, Z. X., & Mujumdar, A. S. (1998). Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below. International Journal of Heat and Mass Transfer, 41(17), 2573–2580.

    Article  Google Scholar 

  • Gowan, T., & Black, H. (1980). Sunworld, 45, 150.

    Google Scholar 

  • de Gracia, A., & Cabeza, L. F. (2017). Numerical simulation of a PCM packed bed system: A review. Renewable and Sustainable Energy Reviews, 69, 1055–1063.

    Article  Google Scholar 

  • Grafiadellis, M. (1985). Proc. 2nd Greek Conf. on Renewable Energy Sources. Salonika.

    Google Scholar 

  • Grafiadellis, M. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Groves, D. (1984). Solar energy in Israel. Jerusalem: Ministry of Energy and Infrastructure.

    Google Scholar 

  • Gschwander, S., Lazaro, A., Cabeza, L. F., Günther, E., Fois, M., & Chui, J. (2011). Development of a test standard for PCM and TCM characterization part 1: Characterization of phase change materials. IEA Report A,2.

    Google Scholar 

  • Günther, E., Hiebler, S., Mehling, H., & Redlich, R. (2009). Enthalpy of phase change materials as a function of temperature: Required accuracy and suitable measurement methods. International Journal of Thermophysics, 30(4), 1257–1269.

    Article  Google Scholar 

  • Gupta, A., & Tiwari, G. N. (2002). Computer model and its validation for prediction of storage effect of water mass in a greenhouse: A transient analysis. Energy Conversion and Management, 43(18), 2625–2640.

    Article  Google Scholar 

  • Haghshenaskashani, S., & Pasdarshahri, H. (2009). Simulation of thermal storage phase change material in buildings. World Academy of Science, Engineering and Technology, 58, 111–115.

    Google Scholar 

  • Hendricks, J. H. C., & Sark, W. G. J. H. M. (2013). Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Progress in Photovoltaics: Research and Applications, 21(4), 620–630.

    Google Scholar 

  • Hong, H., Kim, S. K., & Kim, Y. S. (2004). Accuracy improvement of T-history method for measuring heat of fusion of various materials. International Journal of Refrigeration, 27(4), 360–366.

    Article  MathSciNet  Google Scholar 

  • Huang, B. K., Toksoy, M., & Cengel, Y. A. (1986). Transient response of latent heat storage in greenhouse solar system. Solar Energy, 37(4), 279–292.

    Article  Google Scholar 

  • Ismail, K. A., Henriquez, J. R., & Da Silva, T. M. (2003). A parametric study on ice formation inside a spherical capsule. International Journal of Thermal Sciences, 42(9), 881–887.

    Article  Google Scholar 

  • ISO 12185:1996, Crude petroleum and petroleum products – Determination of density – Oscillating U-tube method.

    Google Scholar 

  • ISO 3675:1998, Crude petroleum and liquid petroleum products – Laboratory determination of density – Hydrometer method.

    Google Scholar 

  • Jaffrin, A., & Makhlouf, S. (1987). Proc. ISES Solar World Congress (p. 3358). Hamburg.

    Google Scholar 

  • Jaffrin, A., & Cadier, P. (1982). Latent heat storage applied to horticulture. Solar Energy, 28(4), 313–321.

    Article  Google Scholar 

  • Jaffrin, A., Hallot, J., & Lubrano, M. (1982). La seize solaire architecture agriculture, UNESCO.

    Google Scholar 

  • Javani, N., Dincer, I., Naterer, G. F., & Yilbas, B. S. (2014). Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer, 72, 690–703.

    Article  Google Scholar 

  • Jelinkova, H. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Karthikeyan, S., Solomon, G. R., Kumaresan, V., & Velraj, R. (2014). Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Conversion and Management, 78, 74–80.

    Article  Google Scholar 

  • Kavin, J., & Kurtan, S. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Khodadadi, J. M., & Zhang, Y. (2001). Effects of buoyancy-driven convection on melting within spherical containers. International Journal of Heat and Mass Transfer, 44(8), 1605–1618.

    Article  Google Scholar 

  • Khodadadi, J. M., Fan, L., & Babaei, H. (2013). Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 24, 418–444.

    Article  Google Scholar 

  • Kizilkan, O., & Dincer, I. (2012). Exergy analysis of borehole thermal energy storage system for building cooling applications. Energy and Buildings, 49, 568–574.

    Article  Google Scholar 

  • Kizilkan, O., & Dincer, I. (2015). Borehole thermal energy storage system for heating applications: Thermodynamic performance assessment. Energy Conversion and Management, 90, 53–61.

    Article  Google Scholar 

  • Kyritsis, S., & Mavroyiannopoulos, G. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Lázaro, A., Günther, E., Mehling, H., Hiebler, S., Marín, J. M., & Zalba, B. (2006). Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Measurement Science and Technology, 17(8), 2168.

    Article  Google Scholar 

  • Levav, N., & Zamir, N. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Lin, D. S., & Nansteel, M. W. (1987). Natural convection heat transfer in a square enclosure containing water near its density maximum. International Journal of Heat and Mass Transfer, 30(11), 2319–2329.

    Article  Google Scholar 

  • Liskola, K. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Liu, J., Xu, C., Ju, X., Yang, B., Ren, Y., & Du, X. (2017). Numerical investigation on the heat transfer enhancement of a latent heat thermal energy storage system with bundled tube structures. Applied Thermal Engineering, 112, 820–831.

    Article  Google Scholar 

  • Liu, M., Tay, N. S., Bell, S., Belusko, M., Jacob, R., Will, G. et al. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews, 53, 1411–1432.

    Article  Google Scholar 

  • Mac Kinnon, D. (1981). Serres Solaires de Production, PIC edition. ARES.

    Google Scholar 

  • Machida, Y., Kudoh, Y., & Takeda, T. (1985). Proc. Symposium on Thermal Application of Solar Energy (p. 503). Japan ISES.

    Google Scholar 

  • Malik, M., Dincer, I., & Rosen, M. A. (2016). Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. International Journal of Energy Research, 40(8), 1011–1031.

    Article  Google Scholar 

  • Mao, Q. (2016). Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant. Renewable and Sustainable Energy Reviews, 59, 320–327.

    Article  Google Scholar 

  • Marín, J. M., Zalba, B., Cabeza, L. F., & Mehling, H. (2003). Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: Improvement to temperature dependent properties. Measurement Science and Technology, 14(2), 184.

    Article  Google Scholar 

  • Mazria, E., & Baker S. (1981). Serres Solaires de Production, PIC edition. ARES.

    Google Scholar 

  • Mercier, J. R. (1982). Design and operation of a solar passive greenhouse in the south-west of France. Energy conservation and use of renewable energies in the bio-industries: Proceedings of the International Seminar on Energy Conservation and the Use of Solar and other Renewable Energies in Agriculture, Horticulture, and Fishculture, held at the Polytechnic of Central London, 15–19 September 1980. Oxford: Pergamon Press.

    Google Scholar 

  • Molz, F. J., Warman, J. C., & Jones, T. E. (1978). Aquifer storage of heated water: Part I – A field experiment. Groundwater, 16(4), 234–241.

    Article  Google Scholar 

  • Molz, F. J., Parr, A. D., & Andersen, P. F. (1981). Thermal energy storage in a confined aquifer: Second cycle. Water Resources Research, 17(3), 641–645.

    Article  Google Scholar 

  • Montero, M., Marfa, M., Serrano, T., & Anton, S. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Moraga, N. O., Xamán, J. P., & Araya, R. H. (2016). Cooling Li-ion batteries of racing solar car by using multiple phase change materials. Applied Thermal Engineering, 108, 1041–1054.

    Article  Google Scholar 

  • Mougou, A., & Verlodt, H. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Nash, R., & Williamson, J. (1978). Proc. ISES Solar World Congress (p. 64).

    Google Scholar 

  • Navarro, L., de Gracia, A., Castell, A., Álvarez, S., & Cabeza, L. F. (2015). PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept. Energy and Buildings, 103, 70–82.

    Article  Google Scholar 

  • Nissen, D. A. (1982). Thermophysical properties of the equimolar mixture sodium nitrate-potassium nitrate from 300 to 600 degree C. Journal of Chemical and Engineering Data, 27(3), 269–273.

    Article  Google Scholar 

  • Öztürk, H. H., & Başçetinçelik, A. (2003). Energy and exergy efficiency of a packed-bed heat storage unit for greenhouse heating. Biosystems Engineering, 86(2), 231–245.

    Article  Google Scholar 

  • Pacheco, M., Marreivoc, S., & Rosa, M. (1987). In C. Von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. FAO.

    Google Scholar 

  • Paksoy, H. O., Andersson, O., Abaci, S., Evliya, H., & Turgut, B. (2000). Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renewable Energy, 19(1–2), 117–122.

    Article  Google Scholar 

  • Papadopulos, S. S., & Larson, S. P. (1978). Aquifer storage of heated water: Part II – Numerical simulation of field results. Groundwater, 16(4), 242–248.

    Article  Google Scholar 

  • Paris, V. (1981). Proc. Conf. Solar Greenhouses (p. 240). Perpignan.

    Google Scholar 

  • Peck, J. H., Kim, J. J., Kang, C., & Hong, H. (2006). A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. International Journal of Refrigeration, 29(7), 1225–1232.

    Article  Google Scholar 

  • Pelay, U., Luo, L., Fan, Y., Stitou, D., & Rood, M. (2017). Thermal energy storage systems for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 79, 82–100.

    Article  Google Scholar 

  • Pielichowska, K., & Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Materials Science, 65, 67–123.

    Article  Google Scholar 

  • Reddy, K. S., Mudgal, V., & Mallick, T. K. (2018). Review of latent heat thermal energy storage for improved material stability and effective load management. Journal of Energy Storage, 15, 205–227.

    Article  Google Scholar 

  • Saidov, S. A., & Akhtamov, R. A. (1987). Experimental greenhouse with solar and geothermal heating systems. Geliotechnica, 23(6), 78–80.

    Google Scholar 

  • Şahan, N., Fois, M., & Paksoy, H. (2015). Improving thermal conductivity phase change materials – A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells, 137, 61–67.

    Article  Google Scholar 

  • Sallanbas, H., Durceylan, E., & Yelboga, K. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Sandnes, B., & Rekstad, J. (2006). Supercooling salt hydrates: Stored enthalpy as a function of temperature. Solar Energy, 80(5), 616–625.

    Article  Google Scholar 

  • Santamouris, M., Balaras, C. A., Dascalaki, E., & Vallindras, M. (1994). Passive solar agricultural greenhouses: A worldwide classification and evaluation of technologies and systems used for heating purposes. Solar Energy, 53(5), 411–426.

    Article  Google Scholar 

  • Seki, Y., Ince, S., Ezan, M. A., Turgut, A., & Erek, A. (2015). Development and evaluation of graphite nanoplate (GNP)-based phase change material for energy storage applications. International Journal of Energy Research, 39(5), 696–708.

    Article  Google Scholar 

  • Solé, A., Miró, L., Barreneche, C., Martorell, I., & Cabeza, L. F. (2013). Review of the T-history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews, 26, 425–436.

    Article  Google Scholar 

  • Sørensen, B. (1989). Experiments with energy storage in a high-latitude greenhouse. Solar Energy, 42(4), 293–301.

    Article  Google Scholar 

  • Stanković, S. B., & Kyriacou, P. A. (2012). The effects of thermistor linearization techniques on the T-history characterization of phase change materials. Applied Thermal Engineering, 44, 78–84.

    Article  Google Scholar 

  • Straub, D., Coppinger, E., & Bylon, D. (1978). 3rd Conf. on Solar Energy fi1r Heating of Greenhouses Residence Combination (p. 101).

    Google Scholar 

  • Sykes, J. F., Lantz, R. B., Pahwa, S. B., & Ward, D. S. (1982). Numerical simulation of thermal energy storage experiment conducted by Auburn University. Groundwater, 20(5), 569–576.

    Article  Google Scholar 

  • Tan, F. L. (2008). Constrained and unconstrained melting inside a sphere. International Communications in Heat and Mass Transfer, 35(4), 466–475.

    Article  Google Scholar 

  • Tan, F. L., Hosseinizadeh, S. F., Khodadadi, J. M., & Fan, L. (2009). Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52(15–16), 3464–3472.

    Article  Google Scholar 

  • Tavman, I., & Turgut, A. (2010). An investigation on thermal conductivity and viscosity of water-based nanofluids. Microfluidics Based Microsystems, 139–162.

    Google Scholar 

  • Tsang, C. F., Buscheck, T., & Doughty, C. (1981). Aquifer thermal energy storage: A numerical simulation of Auburn University field experiments. Water Resources Research, 17(3), 647–658.

    Article  Google Scholar 

  • Turgut, A., Sauter, C., Chirtoc, M., Henry, J., Tavman, S., Tavman, I., & Pelzl, J. (2008). AC hot wire measurement of thermophysical properties of nanofluids with 3ω method. The European Physical Journal-Special Topics, 153, 349–352.

    Article  Google Scholar 

  • Ukrainczyk, N., Kurajica, S., & Šipušić, J. (2010). Thermophysical comparison of five commercial paraffin waxes as latent heat storage materials. Chemical and Biochemical Engineering Quarterly, 24(2), 129–137.

    Google Scholar 

  • Von Zabeltitz, C., & Rosocha, C. (1987). In C. Von Zabeltitz (Ed.), Greenhouse heating with solar energy. FAO.

    Google Scholar 

  • Vonarburg, J. J., & Gallacher, G. (1982). Proc. Conf. Solar Greenhouses (p. 156). Perpignan.

    Google Scholar 

  • Wang, X., Niu, J., Li, Y., Zhang, Y., Wang, X., Chen, B., et al. (2008). Heat transfer of microencapsulated PCM slurry flow in a circular tube. AICHE Journal, 54(4), 1110–1120.

    Article  Google Scholar 

  • Woodston, D. G. (1982). Proc. Conf. Solar Greenhouses (p. 156). Perpignan.

    Google Scholar 

  • Wu, M., Xu, C., & He, Y. (2016). Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules. Applied Thermal Engineering, 93, 1061–1073.

    Article  Google Scholar 

  • Xia, L., Zhang, P., & Wang, R. Z. (2010). Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energy, 35(5), 2022–2032.

    Article  Google Scholar 

  • Yamagishi, Y., Takeuchi, H., Pyatenko, A. T., & Kayukawa, N. (1999). Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE Journal, 45(4), 696–707.

    Article  Google Scholar 

  • Yavuz, F. E. (2017). Natural convection driven phase change inside spherical capsules. MSc thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir.

    Google Scholar 

  • Yiannoulis, P. (1990). ACTA Hortie.

    Google Scholar 

  • Yinping, Z., Yi, J., & Yi, J. (1999). A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measurement Science and Technology, 10(3), 201.

    Article  Google Scholar 

  • Yoshioka, T. (1989). Proc. ISES Solar World Congress (p. 3070). Kobe.

    Google Scholar 

  • Yu, J., Chen, X., Ma, X., Song, Q., Zhao, Y., & Cao, J. (2014). Influence of nanoparticles and graphite foam on the supercooling of acetamide. Journal of Nanomaterials, 2014, 214.

    Google Scholar 

  • Zafar, S. (2015). Experimental and theoretical investigation of novel phase change materials for thermal applications. PhD dissertation, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa.

    Google Scholar 

  • Zafar, S., Dincer, I., & Gadalla, M. (2017). Evaluation of thermophysical properties of refrigerant clathrates with additives. International Communications in Heat and Mass Transfer, 89, 165–175.

    Article  Google Scholar 

  • Zeroni, M. (1990). ACTA Hortic.

    Google Scholar 

  • Zhou, Z., Zhang, Z., Zuo, J., Huang, K., & Zhang, L. (2015). Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renewable and Sustainable Energy Reviews, 48, 692–703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dincer, I., Ezan, M.A. (2018). System Characterization and Case Studies. In: Heat Storage: A Unique Solution For Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91893-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91893-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91892-1

  • Online ISBN: 978-3-319-91893-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics