Skip to main content

System Optimization

  • Chapter
  • First Online:
Book cover Heat Storage: A Unique Solution For Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 1270 Accesses

Abstract

In this chapter, we present an important topic, so-called: optimization, for various TES systems and applications. The basic details and concepts of optimization, along with objective functions and constraints, are discussed, and the necessary details are provided for the researchers and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Surface area, m2

c :

Specific heat, J/kgK

C :

Heat capacity rate, kW/K

\( \dot{C} \) :

Cost rate, $/h

E :

Energy, J

Ex :

Exergy, J

\( \dot{E}x \) :

The rate of exergy, W

i :

Interest rate, %

I :

Irreversibility, J

\( \dot{I} \) :

The rate of irreversibility, kW

\( {\dot{k}}_o \) :

The sum of the fixed maintenance cost and any other annual costs that apply to the storage system, $/year

L :

Length of the tube, m

m :

Mass, kg

\( \dot{m} \) :

Mass flow rate, kg/s

n :

Number of years, years

N :

Total number of operating hours, hours

N s :

Dimensionless entropy generation number

NTU:

Number of transfer units

P :

Pressure (Pa) or perimeter (m)

q :

Heat transfer rate, W

Q :

Total heat transfer, J

\( \dot{Q} \) :

Heat transfer rate, W

R :

Ideal gas constant, J/kgK

S :

Total entropy, J/K

S gen :

Total entropy generation, J/K

\( {\dot{S}}_{gen} \) :

The rate of entropy generation, kW/K

Ste:

Stefan number

T :

Time, s

T :

Temperature, K or °C

U :

Overall heat transfer coefficient, W/m2K

\( \dot{W} \) :

Work, kW

x :

Cartesian coordinates, m

y :

Dimensionless parameter =1 − exp(−NTU)

\( \dot{Z} \) :

The annualized total capital cost of owning the sensible heat TES system ($/year)

ε :

The effectiveness of the heat exchanger

Δ:

Difference

η :

Energy efficiency

ϕ :

Maintenance factor

Ξ :

Exergy, kJ

λ :

The unit cost of lost work ($/kW-hour)

γ UA :

Cost per unit overall heat conductance ($°C/kW-hour)

\( \dot{\Gamma} \) :

Total annual cost of owning and operating the storage system ($/year)

ρ :

Density, kg/m3

θ :

Dimensionless charging time

τ :

Characteristic temperature difference

ψ:

Exergy efficiency

g :

Gas

i :

Initial or inner

in :

Inlet

m :

Melting

min :

Minimum

o :

Dead state

opt :

Optimum

out :

Outlet

P :

Pressure

s :

Surface or storage

sf :

Solid to liquid

T :

Temperature

u :

Useful

w :

Working fluid

ANN :

Artificial neural network

CRF :

Capital recovery factor

GA :

Genetic algorithm

HEV :

Hybrid electric vehicle

LINMAP :

Linear programming technique for multidimensional analysis of preference

LHV :

Lower heating value

TXV :

Thermal expansion valve

References

  • Badar, M. A., Zubair, S. M., & Al-Farayedhi, A. A. (1993). Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system. Energy, 18(6), 641–649.

    Article  Google Scholar 

  • Bejan, A. (1978). Two thermodynamic optima in the design of sensible heat units for energy storage. Journal of Heat Transfer, 100(4), 708–712.

    Article  Google Scholar 

  • Bejan, A. (1996). Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79(3), 1191–1218.

    Article  Google Scholar 

  • De Lucia, M., & Bejan, A. (1991). Thermodynamics of phase-change energy storage: The effects of liquid superheating during melting, and irreversibility during solidification. Journal of Solar Energy Engineering, 113(1), 2–10.

    Article  Google Scholar 

  • Dincer, I., & Rosen, M. (2001). Thermal energy storage: Systems and applications. Chichester: Wiley.

    Google Scholar 

  • Dincer, I., & Rosen, M. (2011). Thermal energy storage: Systems and applications (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Dincer, I., Rosen, M., & Ahmadi, P. (2017). Optimization of energy systems. Chichester: Wiley.

    Book  Google Scholar 

  • El-Emam, R. S., & Dincer, I. (2018). Investigation and assessment of a novel solar-driven integrated energy system. Energy Conversion and Management, 158, 246–255.

    Article  Google Scholar 

  • Gunnewiek, L. H., Nguyen, S., & Rosen, M. A. (1993). Evaluation of the optimum discharge period for closed thermal energy storages using energy and exergy analyses. Solar Energy, 51(1), 39–43.

    Article  Google Scholar 

  • Javani, N., Dincer, I., Naterer, G. F., & Yilbas, B. S. (2014). Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Applied Thermal Engineering, 64(1–2), 471–482.

    Article  Google Scholar 

  • Lazzaretto, A., & Tsatsaronis, G. (2006). SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31(8–9), 1257–1289.

    Article  Google Scholar 

  • Lim, J. S., Bejan, A., & Kim, J. H. (1992). Thermodynamic optimization of phase-change energy storage using two or more materials. Journal of Energy Resources Technology, 114(1), 84–90.

    Article  Google Scholar 

  • Taylor, M. J., & Krane, R. J. (1991). Second law optimization of a sensible heat thermal energy storage system with a distributed storage element – Part 1: Development of the analytical model. Journal of Energy Resources Technology, 113, 20–26.

    Article  Google Scholar 

  • Turton, R., Bailie, R., Whiting, W. B., Shaeiwitz, J., & Bhattacharyya, D. (2012). Analysis, synthesis, and design of chemical processes (4th ed.). Upper Saddle River: Pearson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dincer, I., Ezan, M.A. (2018). System Optimization. In: Heat Storage: A Unique Solution For Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91893-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91893-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91892-1

  • Online ISBN: 978-3-319-91893-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics