Skip to main content

Thermal Energy Storage Applications

  • Chapter
  • First Online:
  • 1501 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this particular chapter, we deal with a wide range of thermal energy storage (TES) applications from residential sector to power generation plants. Some practical applications of sensible heat and latent heat TES systems into heating and cooling systems are presented. The chapter also includes a brief discussion on the phase change materials (PCM) and its applications in thermal management such as buildings, photovoltaics, and thermoelectric generators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

c :

Specific heat, J/kgK

C :

Volumetric heat capacity, J/m3K

D :

Depth, m

ΔH :

Reaction enthalpy, J/mol

h :

Specific enthalpy, J/kg

I solar :

Incident solar radiation, W/m2

L :

Length, m

\( \dot{Q} \) :

The rate of heat transfer, W

t :

Thickness

T :

Temperature, K or °C

x, y :

Cartesian coordinate, m

β :

The temperature coefficient of a PVP, K−1

η :

Efficiency

conv :

Convection

m :

Melting

pvp :

Photovoltaic panel

rad :

Radiation

ref :

Reference

sf :

Solid to liquid

ATES:

Aquifer thermal energy storage

BIPVP:

Building-integrated photovoltaic panel

BTES:

Borehole thermal energy storage

COP:

Coefficient of performance

CSP:

Concentrated solar power

CTES:

Cold thermal energy storage

HTES:

Heat thermal energy storage

HTF:

Heat transfer fluid

HVAC:

Heating ventilation air conditioning

IEA:

International Energy Agency

LHTES:

Latent heat thermal energy storage system

LFR:

Linear Fresnel reflectors

PCM:

Phase change material

PDC:

Parabolic dish collector

PTC:

Parabolic trough collector

PVP:

Photovoltaic panel

PVP/T:

Photovoltaic thermal system

SDHW:

Solar domestic hot water

SPT:

Solar power tower

TEG:

Thermoelectric generator

TES:

Thermal energy storage

References

  • Aelenei, L., Pereira, R., Gonçalves, H., & Athienitis, A. (2014). Thermal performance of a hybrid BIPV-PCM: Modeling, design and experimental investigation. Energy Procedia, 48, 474–483.

    Article  Google Scholar 

  • Al-Sanea, S. A., Zedan, M. F., & Al-Hussain, S. N. (2012). Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, 89(1), 430–442.

    Article  Google Scholar 

  • Ames, W. D. (1983). Photovoltaic devices for producing electrical and heat energy. United States of America. Patent number US4389533.

    Google Scholar 

  • Biwole, P. H., Eclache, P., & Kuznik, F. (2013). Phase-change materials to improve solar panel’s performance. Energy and Buildings, 62, 59–67.

    Article  Google Scholar 

  • Browne, M. C., Norton, B., & McCormack, S. J. (2015). Phase change materials for photovoltaic thermal management. Renewable and Sustainable Energy Reviews, 47, 762–782.

    Article  Google Scholar 

  • Cabeza, L. F., Mehling, H., Hiebler, S., & Ziegler, F. (2002). Heat transfer enhancement in water when used as PCM in thermal energy storage. Applied Thermal Engineering, 22(10), 1141–1151.

    Article  Google Scholar 

  • Cabeza, L. F., Ibanez, M., Sole, C., Roca, J., & Nogués, M. (2006). Experimentation with a water tank including a PCM module. Solar Energy Materials and Solar Cells, 90(9), 1273–1282.

    Article  Google Scholar 

  • Cabeza, L. F., Castell, A., Barreneche, C. D., De Gracia, A., & Fernández, A. I. (2011). Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675–1695.

    Article  Google Scholar 

  • Evans, D. L., & Florschuetz, L. W. (1977). Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Solar Energy, 19(3), 255–262.

    Article  Google Scholar 

  • Ezan, M. A. (2006). Design and optimization of Ice-on-Coil latent thermal storage system. MSc thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir.

    Google Scholar 

  • Ezan, M. A. (2011). Experimental and numerical investigation of cold thermal energy storage systems. PhD thesis, Graduate School of Natural and Applied Sciences of Dokuz Eylul University, Izmir.

    Google Scholar 

  • Ezan, M. A., Cetin, L., & Erek, A. (2011). Ice thickness measurement method for thermal energy storage unit. Journal of Thermal Science and Technology, 31, 1–10.

    Google Scholar 

  • Hasan, A., McCormack, S. J., Huang, M. J., & Norton, B. (2014). Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) system through temperature regulation and performance enhancement of photovoltaics. Energies, 7(3), 1318–1331.

    Article  Google Scholar 

  • Hasan, A., McCormack, S. J., Huang, M. J., Sarwar, J., & Norton, B. (2015). Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy, 115, 264–276.

    Article  Google Scholar 

  • Hasan, A., Sarwar, J., Alnoman, H., & Abdelbaqi, S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417–429.

    Article  Google Scholar 

  • Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques. Energy Conversion and Management, 39(11), 1127–1138.

    Article  Google Scholar 

  • Hassan, A., Nouman, H., Assi, A., & Norton, B. (2014). Temperature regulation and thermal energy storage potential of phase change materials layer contained at the back of a building integrated photovoltaic panel. Proceedings of the 30th International PLEA Conference (pp. 16–18), CEPT University, Ahmedabad.

    Google Scholar 

  • Heier, J., Bales, C., & Martin, V. (2015). Combining thermal energy storage with buildings–a review. Renewable and Sustainable Energy Reviews, 42, 1305–1325.

    Article  Google Scholar 

  • Hendricks, J. H. C., & Sark, W. G. J. H. M. (2011). Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Progress in Photovoltaics: Research and Applications, 21(4), 620–630.

    Google Scholar 

  • Huang, M. J., Eames, P. C., & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, 47(12), 2715–2733.

    Article  Google Scholar 

  • Huang, M. J., Eames, P. C., Norton, B., & Hewitt, N. J. (2011). Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 95(7), 1598–1603.

    Article  Google Scholar 

  • Icesynergy. www.icesynergy.com. Accessed 12 Jan 2018.

  • IEA International Energy Agency. https://www.iea.org/newsroom/news/2017/january/making-freshwater-from-the-sun.html. Accessed 12 Jan 2018.

  • Iten, M., Liu, S., & Shukla, A. (2016). A review on the air-PCM-TES application for free cooling and heating in the buildings. Renewable and Sustainable Energy Reviews, 61, 175–186.

    Article  Google Scholar 

  • Kenisarin, M., & Mahkamov, K. (2007). Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, 11(9), 1913–1965.

    Article  Google Scholar 

  • Khalifa, A. J. N., Suffer, K. H., & Mahmoud, M. S. (2013). A storage domestic solar hot water system with a back layer of phase change material. Experimental Thermal and Fluid Science, 44, 174–181.

    Article  Google Scholar 

  • Krauter, S., Araújo, R. G., Schroer, S., Hanitsch, R., Salhi, M. J., Triebel, C., & Lemoine, R. (1999). Combined photovoltaic and solar thermal systems for facade integration and building insulation. Solar Energy, 67(4), 239–248.

    Article  Google Scholar 

  • Kürklü, A., Özmerzi, A., & Bilgin, S. (2002). Thermal performance of a water-phase change material solar collector. Renewable Energy, 26(3), 391–399.

    Article  Google Scholar 

  • Li, Y., Witharana, S., Cao, H., Lasfargues, M., Huang, Y., & Ding, Y. (2014). Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology, 15, 39–44.

    Article  Google Scholar 

  • Lillo, B. I., Silva, P. M., & Larraneta, G. C. M. (2011). Use of phase change materials in photovoltaic modules with solar concentration of up to 2. 26th European photovoltaic solar energy conference and exhibition, Hamburg.

    Google Scholar 

  • Mahamudul, H., Rahman, M. M., Metselaar, H. S. C., Mekhilef, S., Shezan, S. A., Sohel, R., et al. (2016). Temperature regulation of photovoltaic module using phase change material: A numerical analysis and experimental investigation. International Journal of Photoenergy, 5917028, 1–8.

    Article  Google Scholar 

  • Maiti, S., Banerjee, S., Vyas, K., Patel, P., & Ghosh, P. K. (2011). Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Solar Energy, 85(9), 1805–1816.

    Article  Google Scholar 

  • Makki, A., Omer, S., & Sabir, H. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews, 41, 658–684.

    Article  Google Scholar 

  • Mehling, H., Cabeza, L. F., Hippeli, S., & Hiebler, S. (2003). PCM-module to improve hot water heat stores with stratification. Renewable Energy, 28(5), 699–711.

    Article  Google Scholar 

  • Oró, E., De Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513–533.

    Article  Google Scholar 

  • Pelay, U., Luo, L., Fan, Y., Stitou, D., & Rood, M. (2017). Thermal energy storage systems for concentrated solar power plants. Renewable and Sustainable Energy Reviews, 79, 82–100.

    Article  Google Scholar 

  • Rabin, Y., Bar-Niv, I., Korin, E., & Mikic, B. (1995). Integrated solar collector storage system based on a salt-hydrate phase-change material. Solar Energy, 55(6), 435–444.

    Article  Google Scholar 

  • Rosen, M. A. (2001). The exergy of stratified thermal energy storages. Solar Energy, 71(3), 173–185.

    Article  Google Scholar 

  • Sarwar, J. (2012). Experimental and numerical investigation of thermal regulation of photovoltaic and concentrated photovoltaic using phase change materials. PhD thesis. Dublin Institute of Technology.

    Google Scholar 

  • Sayyar, M., Weerasiri, R. R., Soroushian, P., & Lu, J. (2014). Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy and Buildings, 75, 249–255.

    Article  Google Scholar 

  • Seddegh, S., Wang, X., Henderson, A. D., & Xing, Z. (2015). Solar domestic hot water systems using latent heat energy storage medium: A review. Renewable and Sustainable Energy Reviews, 49, 517–533.

    Article  Google Scholar 

  • Sharif, M. A., Al-Abidi, A. A., Mat, S., Sopian, K., Ruslan, M. H., Sulaiman, M. Y., & Rosli, M. A. M. (2015). Review of the application of phase change material for heating and domestic hot water systems. Renewable and Sustainable Energy Reviews, 42, 557–568.

    Article  Google Scholar 

  • Sharma, S., Tahir, A., Reddy, K. S., & Mallick, T. K. (2016). Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material. Solar Energy Materials and Solar Cells, 149, 29–39.

    Article  Google Scholar 

  • Shinde, G. D., Suresh, P. R., & Sancheti, S. D. (2015). Influence of fins on solidification of phase change material in rectangular capsule. International Journal of Modern Trends in Engineering and Research (IJMTER), 2(6), 351–360.

    Google Scholar 

  • Tatsidjodoung, P., Le Pierrès, N., & Luo, L. (2013). A review of potential materials for thermal energy storage in building applications. Renewable and Sustainable Energy Reviews, 18, 327–349.

    Article  Google Scholar 

  • U.S. Energy Information Administration. https://www.eia.gov/energyexplained/index.cfm?page=us_energy_homes#tab1. Accessed 12 Jan 2018.

  • Wu, Y. (2009). Thermal management of concentrator photovoltaics. PhD thesis, University of Warwick.

    Google Scholar 

  • Yamagishi, Y., Sugeno, T., Ishige, T., Takeuchi, H., & Pyatenko, A. T. (1996, August). An evaluation of microencapsulated PCM for use in cold energy transportation medium. Energy Conversion Engineering Conference, 1996. IECEC 96. Proceedings of the 31st Intersociety (Vol. 3, pp. 2077–2083). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dincer, I., Ezan, M.A. (2018). Thermal Energy Storage Applications. In: Heat Storage: A Unique Solution For Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-91893-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91893-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91892-1

  • Online ISBN: 978-3-319-91893-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics