Conversational Agent Module for French Sign Language Using Kinect Sensor

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10188)

Abstract

Inside a CAVE different AR/VR scenarios can be constructed. Some scenarios use conversational agent interaction. In case of “deaf-mute” person the interaction must be based on sign language. The idea of this paper is to propose a “deaf-mute conversational agent” module based on sign language interaction. This innovative AR module is based on Kinect acquisition and real time 3D gesture recognition techniques.

Keywords

Kinect camera Conversational agent Human gesture recognition 3D motion trajectory Real time processing Sign language 

References

  1. 1.
    Baumann, J.: Military applications of virtual reality. Human Interface Technology Laboratory (2010). www.hitl.washington.edu/scivw/EVE/II.G.Military.html
  2. 2.
    Rizzo, A., Parsons, T.D., Lange, B., Kenny, P., Buckwalter, J.G., Rothbaum, B., Difede, J., Frazier, J., Newman, B., Williams, J., et al.: Virtual reality goes to war: a brief review of the future of military behavioral healthcare. J. Clin. Psychol. Med. Settings 18(2), 176–187 (2011)CrossRefGoogle Scholar
  3. 3.
    Riva, G.: Virtual Reality in Neuro-Psycho-Physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, vol. 44. IOS Press, Amsterdam (1997)Google Scholar
  4. 4.
    Laver, K., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Stroke 43(2), e20–e21 (2012)CrossRefGoogle Scholar
  5. 5.
    Zaal, F.T., Bootsma, R.J.: Virtual reality as a tool for the study of perception-action: the case of running to catch fly balls. Presence Teleoperators Virtual Environ. 20(1), 93–103 (2011)CrossRefGoogle Scholar
  6. 6.
    Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., Craig, C.: Using virtual reality to analyze sports performance. IEEE Comput. Graph. Appl. 30(2), 14–21 (2010)Google Scholar
  7. 7.
    Sanz, A., González, I., Castejón, A.J., Casado, J.L.: Using virtual reality in the teaching of manufacturing processes with material removal in CNC machine-tools. In: Materials Science Forum, vol. 692, pp. 112–119. Trans Tech Publ (2011)CrossRefGoogle Scholar
  8. 8.
    Yair, Y., Mintz, R., Litvak, S.: 3D-virtual reality in science education: an implication for astronomy teaching. J. Comput. Math. Sci. Teach. 20(3), 293–306 (2001)Google Scholar
  9. 9.
    Van Krevelen, D., Poelman, R.: A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real. 9(2), 1–20 (2010)Google Scholar
  10. 10.
    Zhao, Q.: A survey on virtual reality. Sci. China Ser. F Inf. Sci. 52(3), 348–400 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fernando, T., Murray, N., Gautier, G., Mihindu, S., Loupos, K., Gravez, P., Hoffmann, H., Blondelle, J., Di Marca, S., Fontana, M., et al.: State-of-the-art in VR. Technical report (2004)Google Scholar
  12. 12.
    Fuchs, P., Moreau, G., Guitton, P.: Virtual Reality: Concepts and Technologies. CRC Press, Boca Raton (2011)Google Scholar
  13. 13.
    Ridene, T., Leroy, L., Chendeb, S.: Innovative virtual reality application for road safety education of children in urban areas. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9475, pp. 797–808. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27863-6_75CrossRefGoogle Scholar
  14. 14.
    Salous, S., Ridene, T., Newton, J., Chendeb, S.: Study of geometric dispatching of four-kinect tracking module inside a CAVE. In: Proceedings of the 10th International Conference on Disability, Virtual Reality and Associated Technologies, pp. 369–372 (2014)Google Scholar
  15. 15.
    Salous, S., Newton, J., Leroy, L., Chendeb, S.: Dynamic sensor selection based on joint data quality in the context of a multi-kinect module inside the CAVE “Le SAS”. Int. J. Comput. Theor. Eng. 8(6), 471 (2016)CrossRefGoogle Scholar
  16. 16.
    Anderson, J.N., Davidson, N., Morton, H., Jack, M.A.: Language learning with interactive virtual agent scenarios and speech recognition: lessons learned. Comput. Animat. Virtual Worlds 19(5), 605–619 (2008)CrossRefGoogle Scholar
  17. 17.
    Rubin, V.L., Chen, Y., Thorimbert, L.M.: Artificially intelligent conversational agents in libraries. Libr. Hi Tech 28(4), 496–522 (2010)CrossRefGoogle Scholar
  18. 18.
    Van Lun, E.: Conversational agent. https://www.chatbots.org/conversational_agent/
  19. 19.
    Wang, H.C., Lai, C.T.: Kinect-taped communication: using motion sensing to study gesture use and similarity in face-to-face and computer-mediated brainstorming. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3205–3214. ACM (2014)Google Scholar
  20. 20.
    Chai, X., Li, G., Lin, Y., Xu, Z., Tang, Y., Chen, X., Zhou, M.: Sign language recognition and translation with kinect. In: IEEE Conference on AFGR (2013)Google Scholar
  21. 21.
    Chen, X., et al.: Kinect sign language translator expands communication possibilities. Microsoft Research (2013)Google Scholar
  22. 22.
    Wang, H., Chai, X., Zhou, Y., Chen, X.: Fast sign language recognition benefited from low rank approximation. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–6. IEEE (2015)Google Scholar
  23. 23.
    Suma, E.A., Krum, D.M., Lange, B., Koenig, S., Rizzo, A., Bolas, M.: Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit. Comput. Graph. 37(3), 193–201 (2013)CrossRefGoogle Scholar
  24. 24.
    Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 55–61. ACM (2001)Google Scholar
  25. 25.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In: Classics in Cartography: Reflections on Influential Articles from Cartographica, pp. 15–28 (2011)CrossRefGoogle Scholar
  26. 26.
    Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3–4), 203–219 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Potter, L.E., Araullo, J., Carter, L.: The leap motion controller: a view on sign language. In: Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, pp. 175–178. ACM (2013)Google Scholar
  28. 28.
    Li, Y.: Hand gesture recognition using kinect. In: 2012 IEEE International Conference on Computer Science and Automation Engineering, pp. 196–199. IEEE (2012)Google Scholar
  29. 29.
    Cooper, H., Ong, E.J., Pugeault, N., Bowden, R.: Sign language recognition using sub-units. J. Mach. Learn. Res. 13, 2205–2231 (2012)MATHGoogle Scholar
  30. 30.
    Ridene, T.: Virtual reality server of interaction eXtensible VRSIX. In: IEEE International Conference on Acoustics, Speech and Signal Processing, March 2017Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Poulet
    • 1
  • Victor Haffreingue
    • 1
  • Taha Ridene
    • 2
  1. 1.EFREIVillejuifFrance
  2. 2.U2IS, ENSTA ParisTechParisFrance

Personalised recommendations