Skip to main content

Molecular Mechanism of Autonomy and Self-Organization: An Emerging Concept for the Future of Biomedical Sciences

  • Chapter
Book cover Molecular Mechanisms of Autonomy in Biological Systems
  • 392 Accesses

Abstract

The whole human body can be considered as a precisely programmed system. The entire physiological functions of the human body is regulated through a hierarchical (multilayer) molecular coding system. Disorder in any part of this coding system causes misfunction in the physiological functions in the human body which also can be defined as diseases. Deep understanding of the regulatory mechanisms behind the physiological functions at different layers of these molecular coding systems can open new avenues toward the treatment of diseases with no current cure. Here, we attempt to classify different diseases based on the etiology of diseases at the molecular coding level. We provide examples of diseases with no current effective cure applying conventional therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler R, Canto-Soler MV (2007) Molecular mechanism of optic vesicle development: complexities, ambiguities, and controversies. Dev Biol 305:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agathocleous M, Harris WA (2009) From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol 25:45–69

    Article  CAS  PubMed  Google Scholar 

  3. Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  PubMed  Google Scholar 

  4. Brabletz T (2012) EMT and MET in Metastasis: Where Are the Cancer Stem Cells?. Cancer Cell 22 (6):699–701

    Article  CAS  PubMed  Google Scholar 

  5. Bressan RB et al (2017) Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development, 144(4), 635–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dean DM, Napolitano AP, Youssef J, Morgan JR (2007) Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 21(14):4005–4012

    Article  CAS  PubMed  Google Scholar 

  7. Detrick RJ et al (1990) The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4:493–506

    Article  CAS  PubMed  Google Scholar 

  8. Eiraku M et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  9. Eiraku M et al (2012) Relaxation- expansion model for self-driver retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. BioEssays 34:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esteve P, Bovolenta P (2006) Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol 16:13–19

    Article  CAS  PubMed  Google Scholar 

  11. Foty RA et al (1996) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–1620

    CAS  PubMed  Google Scholar 

  12. Fuhrmann S (2006) Wnt signaling in eye organogenesis. Organogenesis 4:60–67

    Article  Google Scholar 

  13. Fujimori T et al (1990) Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110:97–104

    CAS  PubMed  Google Scholar 

  14. Gauvin R, Ahsan T, Larouche D, Levesque P, Dube J, Auger FA, Nerem RM, Germain L (2010) A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng Part A 16(5):1737–1747

    Article  CAS  PubMed  Google Scholar 

  15. Gilbert S (2000) Developmental biology, 6th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  16. Gjorevski N et al (2014) Bioengineering approaches to guide stem cell-based organogenesis, the company of biologists. Development 141:1794–1804

    Article  CAS  PubMed  Google Scholar 

  17. Grayson WL, Martens TP, Eng GM, Radisic M, Vunjak-Novakovic G (2009) Biomimetic approach to tissue engineering. Semin Cell Dev Biol 20(6):665–673

    Article  CAS  PubMed  Google Scholar 

  18. Hadjimichael C (2015) Common Stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7(9):1150–1189

    PubMed  PubMed Central  Google Scholar 

  19. Hindley C et al (2016) Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol 420:251–261

    Article  CAS  PubMed  Google Scholar 

  20. Humphreys BD (2014) Kidney structures differentiated from stem cells. Nat Cell Biol 16:19–21

    Article  CAS  PubMed  Google Scholar 

  21.  Ishiwata T (2016) Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathology International 66 (11):601–608

    Article  CAS  PubMed  Google Scholar 

  22. Jabbari E (2011) Bioconjugation of hydrogels for tissue engineering. Curr Opin Biotechnol 22(5):655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kachouie NN, Du Y, Bae H, Khabiry M, Ahari AF, Zamanian B, Fukuda J, Khademhosseini A (2010) Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 6(4):234–244

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kobel S, Lutolf MP (2011) Biomaterials meet microfluidics: building the next generation of artificial niches. Curr Opin Biotechnol 22(5):690–697

    Article  CAS  PubMed  Google Scholar 

  26. Kretzschmar K, Clever H (2016) Organoids: modeling development and the stem cell niche in a dish. Dev Cell 38:590–600

    Article  CAS  PubMed  Google Scholar 

  27. Lancaster M, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technology. Science 345(6194):1–9

    Article  Google Scholar 

  28. Little MH, McMahon MP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4:a008300. https://doi.org/10.1101/cshperspect.a008300 pmid: 22550230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livoti CM, Morgan JR (2010) Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng Part A 16(6):2051–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lund AW (2009) The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B 15(3):371–380

    Article  Google Scholar 

  31. Lutolf M, Blau H (2009) Artificial stem cell niches. Adv Mater 21:3255–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miranov V, Kasyanov V, Markward RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22:667–673

    Article  Google Scholar 

  34. Miyajiamn A et al (2014) Stem/progenitor cells in liver development, homeostasis, regeneration and reprogramming. Cell Stem Cell 14(5):561–574

    Article  Google Scholar 

  35. Moscona A (1961) Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res 22:455–475

    Article  CAS  PubMed  Google Scholar 

  36. Oh J et al (2014) Stem cell aging; mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park D et al (2015) Stem cell microenvironment on a chip, current technologies for tissue engineering and stem cell biology. Stem Cell Transl Med 4:1352–1368

    Article  CAS  Google Scholar 

  38. Rodriguez- Seguel E et al (2013) Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev 27(17):1932–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossi JM et al (2001) Distinct mesodermal signals, including BMPs form the septum transversum mesenchyme are required in combination for hepatogenesis from the endoderm. Genes Dev 15(15):1998–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rothermel A et al (1997) Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture. Proc Biol Sci 264:1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato T, Clevers H (2013) Growing self-organizing mini-gut from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194

    Article  CAS  PubMed  Google Scholar 

  42. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchyma niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  43. Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steinberg MS (1964) In: Locke M (ed) Cellular membranes in development. Academic Press, New York, pp 321–366

    Chapter  Google Scholar 

  45. Sweeney P et al (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegeneration 6:1–13

    Article  Google Scholar 

  46. Takebe T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  CAS  PubMed  Google Scholar 

  47. Taguchi A et al (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  48. Takasato M, Little M (2016) A strategy for generating kidney organoids; recapitulating the development of human pluripotent stem cells. Dev Biol 420:210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takasato M et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16:118–126

    CAS  Google Scholar 

  50. Valastyan J, Lindquist S (2014) Mechanisms of protein folding diseases at a glance. Dis Model Mech 7(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiss P, Taylor AC (1960) Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc Natl Acad Sci U S A 46:1177–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wolpert L (2007) Principles of development, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  53. Xia Y et al (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol 15:1507–1515

    CAS  Google Scholar 

  54. Yabut O, Bernstein H (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging 3(5):494–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin X et al (2016) Engineering stem cell organoids. Cell Stem Cell 18:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Žigman M et al (2005) Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48:539–545

    Article  PubMed  Google Scholar 

  57. Zhang Z et al (2017) CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Mol Ther Nucleic Acids, 9, 230–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Karimi, T. (2018). Molecular Mechanism of Autonomy and Self-Organization: An Emerging Concept for the Future of Biomedical Sciences. In: Molecular Mechanisms of Autonomy in Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91824-2_6

Download citation

Publish with us

Policies and ethics