Skip to main content

Molecular Mechanism of Coding and Autonomous Decision-Making in Biological Systems

  • Chapter
Molecular Mechanisms of Autonomy in Biological Systems
  • 377 Accesses

Abstract

Biological systems are recognizable from inanimate materials through their cognition and computation capacity. Cells are the main subunits of a biological system and function as highly advanced computers by executing thousands of operations per second for different biological purposes to dynamically adapt with the environment. Unlike current electronic-based computers, biological systems utilize a molecular-based coding system in which information is stored in molecules. Information storage in molecules provides massive operation capacity for the cells. Deep understanding of mechanisms of coding and data processing in the cells could have several technology applications and trigger an industrial revolution. However, this level of progress requires the establishment of a different scientific viewpoint for life sciences – a paradigm that puts life sciences in a category that is much closer to the other experimental branches of natural sciences including chemistry, physics, and mathematics.

In this chapter, first we provide a detailed description of different aspects of molecular coding and data operation in biological systems applying new concepts of cognitive chemistry and the relativity of code, energy, and mass. We will discuss how information is stored in the patterns of molecular interactions and how real-time interactions between molecules and atoms generate a dynamic coding and operation capacity in biological systems. In the second part, we will discuss how we can leverage the cognitive chemistry knowledge in designing synthetic systems with similar autonomous properties of biological systems. In the third part of this chapter, we will discuss how basic principles of cognitive chemistry can be applied to mimic the extensive computation capacity of biomolecules in solving complex decision making problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024

    Article  CAS  Google Scholar 

  2. Afaq H, Saini S (2011) On the solutions to the traveling salesman problem using nature-inspired computing techniques. IJCSI 8:326–334 

    Google Scholar 

  3. Allard A, Serrano MA, Garcia-Perez G, Boguna M (2017) The geometric nature of weights in real complex networks. Nat Commun 216:1–8

    Google Scholar 

  4. Bradbury J (2005) Molecular insight in to human brain evolution. PLoS Biol 3:0367–0370

    Article  CAS  Google Scholar 

  5. Chen YJ, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8:755–762

    Article  CAS  Google Scholar 

  6. De Castro LN (2007) Fundamentals of natural computing: an overview. Phys Life Rev 4:1–36

    Article  Google Scholar 

  7. Faulhemmer D, et al. (2000) Molecular computation: RNA solution to chess problems. PNAS, USA 57(4):1385-1389

    Google Scholar 

  8. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP completeness. W. H. Freeman & Company, New York, U.S.A

    Google Scholar 

  9. Feng C et al (2013) Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA sequencing data. BMC Genomics 14:732

    Article  CAS  Google Scholar 

  10. Hug H, Schuler R (2001) Strategies for the development of a peptide computer. Bioinformatics 17:364–368

    Article  CAS  Google Scholar 

  11. https://simple.wikipedia.org/wiki/Travelling_salesman_problem

  12. Kim J et al (2008) An extended transcriptional net-work for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  CAS  Google Scholar 

  13. Lee JY, Shin SY, Park TH, Zhang BT (2004) Solving traveling salesman problems with DNA molecules encoding numerical values. Biosystems 78:39–47

    Article  CAS  Google Scholar 

  14. Liu Q et al (2000) DNA computing on surface. Nature 403:175–179

    Article  CAS  Google Scholar 

  15. Mark F, Klingmuller U, Decker K (2009) Cellular signal processing, an information to the molecular mechanism of signal transduction. USA, Gaelan Science, Tylor and Francis Group

    Google Scholar 

  16. Naquin D, Aubenton-Carafa Y, Thernes C, Silvain M (2014) Circus: a package for circus display of structural genome variation for paired-end and mate-pair sequencing data. BMC Bioinformatics 14:198

    Article  Google Scholar 

  17. Nelson DL, Cox M (2017) Lehninger principles of biochemistry, 7th edn. W.H. Freeman & Company, New York

    Google Scholar 

  18. Nicolau D Jr et al (2016) Parallel computation with molecular- motor- propelled agents in nanofabricated networks. PNAS 13:2591–2596

    Article  Google Scholar 

  19. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–2011

    Article  CAS  Google Scholar 

  20. Redriguez RA, Yu L, Chen LY (2015) Computing protein- protein association affinity with hybrid steered molecular dynamics. J Chem Theory Comput 11:4427–4438

    Article  Google Scholar 

  21. Roy S (2013) Bioinspired ant algorithms, a review. J Modern Education Comput Sci 4:25–35

    Article  Google Scholar 

  22. Rubens J, Selvaggio G, Lu TK (2016) Synthetic mixed signal computation in living cells. Nat Commun 2016(7):11658

    Article  Google Scholar 

  23. Rune J et al (2015) Identifying causal gateways and mediators in complex spatiotemporal systems. Nat Commun 6:8502

    Article  Google Scholar 

  24. Schatz MC, Langmead B, Sazberg S (2010) Cloud computing and DNA data race. Nat Biotechnol 28:691–693

    Article  CAS  Google Scholar 

  25. Schrodinger E (1944) What is life. Cambridge University Press, UK

    Google Scholar 

  26. Schrodinger E (1935) Die gegenwartige Situation in der Quantenmechanik. Die Naturwissenschaften 23 (48):807–812

    Google Scholar 

  27. Shapiro E, Ran T (2013) DNA computing: molecules reach consensus. Nat Nanotechnol 8:703–705

    Article  CAS  Google Scholar 

  28. Singh S, Lodhi EA (2013) Study of variation in TSP using genetic algorithm and its operator comparison. IJSCE 3:2231–2307

    Google Scholar 

  29. Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 2013(31):448–452

    Article  Google Scholar 

  30. Tarkov MS (2015) Solving the traveling salesman problem using a recurrent neural network. Am Anal Appl 8:275–283

    Google Scholar 

  31. Tulpan D (2014) Thermodynamic post processing versus GC- content pre- processing for DNA codes satisfying hamming distance and reverse-complement constraints. JEEEA ACM Trans Comput Biol Bioinform 11(2):441–452

    Article  Google Scholar 

  32. Turing A (1936) On computable numbers with an application to Entcheidung problem. Proc Lond Math Soc II Ser 42:230–265

    Google Scholar 

  33. Unger R, Moult J (2006) Towards computing with proteins. Proteins 63(53–64):9

    Google Scholar 

  34. Wang Z, Dongmei H, Meng H, Tang C (2013) A new fast algorithm for solving minimum spanning tree problem based on DNA molecules computation. Biosystems 1114:1–7

    Article  Google Scholar 

  35. Weissman JA, Pan YA (2013) New resource and emerging biological application for multicolor genetic labeling analysis. Genetics 199(2):293–306

    Article  Google Scholar 

  36. Weissman JA et al (2011) Generating and imaging multicolor Brainbow mice, Cold Spring Harbor Laboratory Protoc. https://doi.org/10.1101/pdb.top114

    Google Scholar 

  37. Wong L, Low MYH, Chong CS (2010) Bee colony optimization with local search for traveling salesman problem. Int J Artif Intell Tools 19(3):305–334

    Article  Google Scholar 

  38. Yang J, Dung R, Zhang Y, Cong M, Wang F, Tang G (2015) An improved ant colony optimization (I-ACO) method for the quasi traveling salesman problem (Quasi-TSP). Int J Geogr Inf Sci 29:1534–1551

    Article  Google Scholar 

  39. Zhang M, Cheng M, Tarn JA (2006) Mathematical formulation of DNA computation. IEEE Trans Nanobioscience 5(1):32–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Karimi, T. (2018). Molecular Mechanism of Coding and Autonomous Decision-Making in Biological Systems. In: Molecular Mechanisms of Autonomy in Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91824-2_2

Download citation

Publish with us

Policies and ethics