Text Mining pp 183-201 | Cite as

Text Clustering: Conceptual View

  • Taeho Jo
Part of the Studies in Big Data book series (SBD, volume 45)


This chapter is concerned with the conceptual view of text clustering tasks.


  1. 2.
    Allan, J., Papka R., Lavrenko, V.: On-line news event detection and tracking. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 37–34 (1998)Google Scholar
  2. 8.
    Can, F.I., Kocbrtber, S., Baglioglu, O., Kardas, S., Ocalan, H.C., Uyar, E.: New event detection and topic tracking in Turkish. J. Am. Soc. Inf. Sci. Technol. 61, 802–819 (2010)Google Scholar
  3. 24.
    Jo, T.: The application of text clustering techniques to detection of project redundancy in national R&D information system. In: The Proceedings of 2nd International Conference on Computer Science and its Applications (2003)Google Scholar
  4. 25.
    Jo, T.: The Implementation of Dynamic Document Organization Using the Integration of Text Clustering and Text Categorization, University of Ottawa (2006)Google Scholar
  5. 73.
    Nigam, K., Mccallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000)CrossRefGoogle Scholar
  6. 91.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesely, Boston (2006)Google Scholar
  7. 93.
    Vega-Pons, S., Ruiz-Shulclopery, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recognit. Artif. Intell. 25, 337–372 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Taeho Jo
    • 1
  1. 1.School of Game, Hongik UniversitySeoulKorea (Republic of)

Personalised recommendations