Text Mining pp 203-224 | Cite as

Text Clustering: Approaches

  • Taeho Jo
Part of the Studies in Big Data book series (SBD, volume 45)


This chapter is concerned with the unsupervised learning algorithms which are approaches to text clustering.


  1. 19.
    Grossberg, S.: Competitive learning: from interactive activation to adaptive resonance. Cogn. Sci. 11, 23–63 (1987)CrossRefGoogle Scholar
  2. 23.
    Jo, T.: Neural based approach to keyword extraction from documents. Lect. Note Comput. Sci. 2667, 456–461 (2003)Google Scholar
  3. 25.
    Jo, T.: The Implementation of Dynamic Document Organization Using the Integration of Text Clustering and Text Categorization, University of Ottawa (2006)Google Scholar
  4. 51.
    Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. 21, 353–359 (1972)CrossRefGoogle Scholar
  5. 52.
    Kohonen, T., Kaski, S., Lagus, K., Salojavi, J., Honkela, J.: Self organization of massive document collection. IEEE Trans. Neural Netw. 11, 574–585 (2000)CrossRefGoogle Scholar
  6. 67.
    Martinetz, T., Schulten, K.: A “neural gas” network learns topologies. In: Artificial Neural Networks, pp. 397–402 (1991)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Taeho Jo
    • 1
  1. 1.School of Game, Hongik UniversitySeoulKorea (Republic of)

Personalised recommendations