• Taeho Jo
Part of the Studies in Big Data book series (SBD, volume 45)


This chapter is concerned with the introduction to the text mining and its overview is provided in Sect. 1.1.


  1. 11.
    Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Implementation, and Management. Addison Wesley, Reading, MA (2005)Google Scholar
  2. 14.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)Google Scholar
  3. 18.
    Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge, New York (2007)Google Scholar
  4. 25.
    Jo, T.: The Implementation of Dynamic Document Organization Using the Integration of Text Clustering and Text Categorization, University of Ottawa (2006)Google Scholar
  5. 29.
    Jo, T.: The effect of mid-term estimation on back propagation for time series prediction. Neural Comput. Applic. 19, 1237–1250 (2010)CrossRefGoogle Scholar
  6. 32.
    Jo, T.: VTG schemes for using back propagation for multivariate time series prediction. Appl. Soft Comput. 13, 2692–2702 (2013)CrossRefGoogle Scholar
  7. 44.
    Jo, T., Lee, M.: The evaluation measure of text clustering for the variable number of clusters. Lect. Notes Comput. Sci. 4492, 871–879 (2007)Google Scholar
  8. 49.
    Jones, K.S.: Automatic Summarizing: Factors and Directions. In: Advanced Automate Summarization edited by Manu, I. and Maybury M., 1–12 (1999)Google Scholar
  9. 53.
    Konchady, M.: Text Mining Application Programming. Charles River Media, Boston (2006)Google Scholar
  10. 57.
    Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, New York (2005)Google Scholar
  11. 65.
    Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)Google Scholar
  12. 66.
    Markov, Z., Larose D.T.: Data Mining The Web: Uncovering Patterns in Web Content, Structure, and Usage. Wiley, New York (2007)Google Scholar
  13. 70.
    Mitchell, T.: Machine Learning. McGraw-Hill Companies, New York (1997)Google Scholar
  14. 82.
    Salton, G.: Automatic Text Processing: Transformation, Analysis, and Retrieval of Information by Computer. Addison Wesely, Reading (1988)Google Scholar
  15. 85.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)CrossRefGoogle Scholar
  16. 86.
    Shanmugasundara, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, E., Naughton, J., Tatarinov, I.: A general technique for querying XML documents using a relational database system. Newslett. ACM SIGMOD. 30, 20–26 (2001)Google Scholar
  17. 91.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesely, Boston (2006)Google Scholar
  18. 95.
    Wiener, E.D.: A neural network approach to topic spotting in text. The Master Thesis of University of Colorado (1995)Google Scholar
  19. 97.
    Wu, X., Wu, G., Wei, D.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26, 97–107 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Taeho Jo
    • 1
  1. 1.School of Game, Hongik UniversitySeoulKorea (Republic of)

Personalised recommendations