Skip to main content

Liénard-Wiechert Fields

  • Chapter
  • First Online:
Classical Electrodynamics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 4222 Accesses

Abstract

As second basic application of the general solution (6.64) of Maxwell’s equations we determine the electromagnetic field generated by a particle following a generic strictly time-like trajectory, see condition (7.3). This field plays a fundamental role in classical electrodynamics and is named after its discoverers, A.-M. Liénard (1898) (L’Éclair. Électr. 16:5, 53, 106, 1898, [1]) and E.J. Wiechert (1900) (Ann. der Phys. 309:667, 1901, [2]). The solution of Maxwell’s equations for light-like trajectories, not achievable with the Green function method, will be addressed in Chap. 17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, the analysis of Sect. 7.2.2 only proves that for strictly time-like trajectories the Liénard-Wiechert potential (7.16) is a distribution, but not that it satisfies Maxwell’s equations: Being a historical result, we take it for granted.

  2. 2.

    At the quantum level this means that we consider as emitted only those photons which are able to reach spatial infinity, without being reabsorbed by the charged particles.

  3. 3.

    Actually, it can be shown that the acceleration and velocity fields both satisfy the Bianchi identity exactly: \(\partial _{[\mu }F_{a\,\nu \rho ]}=0=\partial _{[\mu }F_{v\,\nu \rho ]}\).

  4. 4.

    In this section R has a different meaning from the same symbol of Sect. 7.3, where \(R=|\mathbf {x}-\mathbf {y}(t')|\), see (7.39).

References

  1. A.-M. Liénard, Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d’un mouvement quelconque. L’Éclair. Électr. 16, 5, 53, 106 (1898)

    Google Scholar 

  2. E.J. Wiechert, Elektrodynamische Elementargesetze. Ann. der Phys. 309, 667 (1901)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Lechner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lechner, K. (2018). Liénard-Wiechert Fields. In: Classical Electrodynamics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-91809-9_7

Download citation

Publish with us

Policies and ethics