Advertisement

Interactive Car Parking Simulation Based on On-line Trajectory Optimization

  • Jungsub Lim
  • Hyejin Kim
  • Daseong HanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10920)

Abstract

This paper presents an on-line trajectory optimization method to simulate the autonomous parking of a car-like vehicle in an environment with static or dynamic obstacles. We employ a stochastic and derivative-free optimization technique called Covariance Matrix Adaptation (CMA) to seamlessly integrate collision events between the car and the environment into the formulation of our autonomous parking problem without resorting to any preprocessing steps to make the problem differentiable. Given the current and target car states, our system repeatedly predicts a sequence of control inputs for a short time window to move the car to the target while shifting the window along the time axis, which facilitates on-line performance. We also present a simple and effective scheme to make our optimization robust to environmental changes by adjusting its parameters in an on-line manner. We show the effectiveness of our method through simulation results for garage parking, parallel parking, and interactive parking based on on-line user input.

Keywords

Autonomous car parking On-line trajectory optimization Simulation Motion planning Stochastic optimization 

Supplementary material

Supplementary material 1 (mp4 14580 KB)

References

  1. 1.
    Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)CrossRefGoogle Scholar
  2. 2.
    Sekhavat, S., Laumond, J.P.: Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems. IEEE Trans. Robot. Autom. 14(5), 671–680 (1998)CrossRefGoogle Scholar
  3. 3.
    Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hsieh, M.F., Ozguner, U.: A parking algorithm for an autonomous vehicle. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 1155–1160. IEEE, June 2008Google Scholar
  5. 5.
    Lee, K., Kim, D., Chung, W., Chang, H.W., Yoon, P.: Car parking control using a trajectory tracking controller. In: International Joint Conference on SICE-ICASE 2006, pp. 2058–2063. IEEE, October 2006Google Scholar
  6. 6.
    Laumond, J.P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)CrossRefGoogle Scholar
  7. 7.
    Muller, B., Deutscher, J., Grodde, S.: Continuous curvature trajectory design and feedforward control for parking a car. IEEE Trans. Control Syst. Technol. 15(3), 541–553 (2007)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Chung, W., Park, S.: Practical motion planning for car-parking control in narrow environment. IET Control Theor. Appl. 4(1), 129–139 (2010)CrossRefGoogle Scholar
  9. 9.
    Barraquand, J., Latombe, J.C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  11. 11.
    Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driving using RRT. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 1681–1686. IEEE, September 2008Google Scholar
  12. 12.
    Buehler, M., Iagnemma, K., Singh, S. (eds.): The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, vol. 56. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03991-1CrossRefGoogle Scholar
  13. 13.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  14. 14.
    Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Collins Jr., E.G.: Robust automatic parallel parking in tight spaces via fuzzy logic. Robot. Auton. Syst. 51(2–3), 111–127 (2005)CrossRefGoogle Scholar
  16. 16.
    Gorinevsky, D., Kapitanovsky, A., Goldenberg, A.: Neural network architecture for trajectory generation and control of automated car parking. IEEE Trans. Control Syst. Technol. 4(1), 50–56 (1996)CrossRefGoogle Scholar
  17. 17.
    Zips, P., Bock, M., Kugi, A.: A fast motion planning algorithm for car parking based on static optimization. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2392–2397. IEEE, November 2013Google Scholar
  18. 18.
    Tassa, Y., Mansard, N., Todorov, E.: Control-limited differential dynamic programming. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168–1175. IEEE, May 2014Google Scholar
  19. 19.
  20. 20.
    Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4906–4913. IEEE, October 2012Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Global Entrepreneurship and ICTHandong Global UniversityPohangRepublic of Korea

Personalised recommendations