Collaborative Literature Search System: An Intelligence Amplification Method for Systematic Literature Search

  • Andrej Dobrkovic
  • Daniel A. Döppner
  • Maria-Eugenia Iacob
  • Jos van Hillegersberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10844)

Abstract

In this paper, we present a method for systematic literature search based on the symbiotic partnership between the human researcher and intelligent agents. Using intelligence amplification, we leverage the calculation power of computers to quickly and thoroughly extract data, calculate measures, and visualize relationships between scientific documents with the ability of domain experts to perform qualitative analysis and creative reasoning. Thus, we create a foundation for a collaborative literature search system (CLSS) intended to aid researches in performing literature reviews, especially for interdisciplinary and evolving fields of science for which keyword-based literature searches result in large collections of documents beyond humans’ ability to process or the extensive use of filters to narrow the search output risks omitting relevant works. Within this article, we propose a method for CLSS and demonstrate its use on a concrete example of a literature search for a review of the literature on human-machine symbiosis.

Keywords

Intelligence amplification Method Collaborative literature search system Human-machine symbiosis Design science research 

References

  1. 1.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. Manag. Inf. Syst. Q. 26, 3 (2002)Google Scholar
  2. 2.
    Sheng, J., Amankwah-Amoah, J., Wang, X.: A multidisciplinary perspective of big data in management research. Int. J. Prod. Econ. 191, 97–112 (2017)CrossRefGoogle Scholar
  3. 3.
    Sturm, B., Sunyaev, A.: If you want your research done right, do you have to do it all yourself? Developing design principles for systematic literature search systems. In: Designing the Digital Transformation: DESRIST 2017 Research in Progress Proceedings of the 12th International Conference on Design Science Research in Information Systems and Technology. Karlsruhe, Germany, 30 May–1 June. Karlsruher Institut für Technologie (KIT) (2017)Google Scholar
  4. 4.
    Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support of information systems research. Inf. Sci. 9, 181–212 (2006)Google Scholar
  5. 5.
    Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)CrossRefGoogle Scholar
  6. 6.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  7. 7.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)CrossRefGoogle Scholar
  8. 8.
    March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15, 251–266 (1995)CrossRefGoogle Scholar
  9. 9.
    Licklider, J.C.: Man-computer symbiosis. IRE Trans. Hum. Factors Electron. 1, 4–11 (1960)CrossRefGoogle Scholar
  10. 10.
    Boell, S.K., Cecez-Kecmanovic, D.: On being ‘systematic’ in literature reviews in IS. J. Inf. Technol. 30, 161–173 (2015)CrossRefGoogle Scholar
  11. 11.
    Boell, S.K., Cecez-Kecmanovic, D.: A hermeneutic approach for conducting literature reviews and literature searches. CAIS 34, 12 (2014)Google Scholar
  12. 12.
    Jalali, S., Wohlin, C.: Systematic literature studies: database searches vs. backward snowballing. In: Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 29–38. ACM (2012)Google Scholar
  13. 13.
    Huang, W., Wu, Z., Mitra, P., Giles, C.L.: Refseer: a citation recommendation system. In: Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 371–374. IEEE Press (2014)Google Scholar
  14. 14.
    Eickhoff, M., Neuss, N.: Topic modelling methodology: its use in information systems and other managerial disciplines. In: Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal, June 5–10, pp. 1327–1347 (2017). ISBN 978-989-20-7655-3 Research PapersGoogle Scholar
  15. 15.
    Kulkarni, S.S., Apte, U.M., Evangelopoulos, N.E.: The use of latent semantic analysis in operations management research. Decis. Sci. 45, 971–994 (2014)CrossRefGoogle Scholar
  16. 16.
    Fischbach, K., Putzke, J., Schoder, D.: Co-authorship networks in electronic markets research. Electron. Mark. 21, 19–40 (2011)CrossRefGoogle Scholar
  17. 17.
    Xiao, Y., Lu, L.Y., Liu, J.S., Zhou, Z.: Knowledge diffusion path analysis of data quality literature: a main path analysis. J. Inform. 8, 594–605 (2014)CrossRefGoogle Scholar
  18. 18.
    Marjanovic, O., Dinter, B.: 25+ years of business intelligence and analytics minitrack at HICSS: a text mining analysis. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)Google Scholar
  19. 19.
    Van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010)CrossRefGoogle Scholar
  20. 20.
    Cummings, M.M.: Man versus machine or man + machine? IEEE Intell. Syst. 29, 62–69 (2014)CrossRefGoogle Scholar
  21. 21.
    Döppner, D.A., Gregory, R.W., Schoder, D., Siejka, H.: Exploring design principles for human-machine symbiosis: insights from constructing an air transportation logistics artifact. In: ICIS 2016 Proceedings, (2016)Google Scholar
  22. 22.
    Dobrkovic, A., Liu, L., Iacob, M.-E., van Hillegersberg, J.: Intelligence amplification framework for enhancing scheduling processes. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 89–100. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47955-2_8CrossRefGoogle Scholar
  23. 23.
    Kuhn, T.S.: The route to normal science. Struct. Sci. Revolut. 2, 10–22 (1970)Google Scholar
  24. 24.
    Prat, N., Comyn-Wattiau, I., Akoka, J.: A taxonomy of evaluation methods for information systems artifacts. J. Manag. Inf. Syst. 32, 229–267 (2015)CrossRefGoogle Scholar
  25. 25.
    Chen, C.: CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 57, 359–377 (2006)CrossRefGoogle Scholar
  26. 26.
    Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 3–20. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13500-7_1CrossRefGoogle Scholar
  27. 27.
    Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1403–1412. ACM (2011)Google Scholar
  28. 28.
    Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7, 174–196 (2000)CrossRefGoogle Scholar
  29. 29.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: a framework on physical space and social interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 437–446. ACM (2006)Google Scholar
  30. 30.
    Kirsh, D.: Adapting the environment instead of oneself. Adapt. Behav. 4, 415–452 (1996)CrossRefGoogle Scholar
  31. 31.
    Harnad, S.: Open access scientometrics and the UK research assessment exercise. Scientometrics 79, 147–156 (2009)CrossRefGoogle Scholar
  32. 32.
    Ahmed, A.-I., Hasan, M.M.: A hybrid approach for decision making to detect breast cancer using data mining and autonomous agent based on human agent teamwork. In: 2014 17th International Conference on Computer and Information Technology (ICCIT), pp. 320–325. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrej Dobrkovic
    • 1
  • Daniel A. Döppner
    • 2
  • Maria-Eugenia Iacob
    • 1
  • Jos van Hillegersberg
    • 1
  1. 1.Industrial Engineering and Business Information SystemUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Information Systems and Information ManagementUniversity of CologneCologneGermany

Personalised recommendations