Skip to main content

Experimental Real-Time Tracking and Numerical Simulation of Hazardous Dust Dispersion in the Atmosphere

  • Conference paper
  • First Online:
Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference

Abstract

The increasing level of air pollution in our cities due to emissions from factories, vehicles and domestic heating, combined with the growing threat of terrorism, requires finding equipment and know-how that are useful for the detection and monitoring of hazardous substances and their dispersion into the atmosphere as quickly and far away as possible.

LiDAR/DIAL systems are considered powerful tools for atmospheric physics studies. Despite the progress achieved in remote sensing field, currently, their long-term use in the field still remains difficult due to economic and technical implications. For these reasons, an integrated framework is proposed in this paper. This framework is based on compact, fully automated, stand-off laser-based systems and numerical simulation tools for both real-time tracking and dispersion modelling of hazardous dust and/or particles into the atmosphere. This combined approach is fully general, and basically, it could be used for atmospheric physics studies and also to predict and prevent the diffusion of CBRNe attacks in critical areas. In fact, the primary goal of the framework will be to provide a rapid alert to the competent authorities if something strange is found and to compute a rapid and accurate prediction of the harmful plume spatio-temporal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiocco, G., Smullin, L.D.: Detection of scattering layers in the upper atmosphere by optical radar. Nature. 199, 1275–1276 (1963). https://doi.org/10.1038/1991275a0

    Article  ADS  Google Scholar 

  2. Collis, R.T.H.: Lidar: a new atmospheric probe. Q. J. R. Meteorol. Soc. 92(392), 220–230 (1966). https://doi.org/10.1002/qj.49709239205

    Article  ADS  Google Scholar 

  3. Schotland, R.M.: Some observations of the vertical profile of water vapour by a laser optical radar. In: Proceedings of 4th Symposium Remote Sensing Environment, University of Michigan, Ann Arbor, 12–14 April, pp. 273–283 (1966)

    Google Scholar 

  4. Barret, E.W., Ben-Dov, O.: Application of Lidar to air pollution measurements. J. Appl. Meteorol. 6, 500–515 (1967)

    Article  ADS  Google Scholar 

  5. Measures, R.M.: Laser Remote Sensing – Fundamentals and Applications. Wiley, Malabar, FL (1992)

    Google Scholar 

  6. Kovalev, V., Eichenger, W.E.: Elastic Lidar, Theory, Practice and Analysis Methods. Wiley, Hoboken, NJ (2004)

    Book  Google Scholar 

  7. Weitkamp, C.: Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, New York (2005)

    Google Scholar 

  8. Fujii, T., Fukuchi, T.: Laser Remote Sensing. Taylor & Francis, Boca Raton, FL (2005)

    Google Scholar 

  9. Parracino, S., Richetta, M., Gelfusa, M., Malizia, A., Bellecci, C., De Leo, L., Perrimezzi, C., Fin, A., Forin, M., Giappicucci, F., Grion, M., Marchese, G., Gaudio, P.: Real-time vehicle emissions monitoring using a compact LiDAR system and conventional instruments: first results of an experimental campaign in southern Italy suburban area. Opt. Eng. 55(10), 1–12 (2016). https://doi.org/10.1117/1.OE.55.10.103107

    Article  Google Scholar 

  10. Gaudio, P., Gelfusa, M., Malizia, A., Parracino, S., Richetta, M., De Leo, L., Perrimezzi, C., Bellecci, C.: Detection and monitoring of pollutant sources with LiDAR/dial techniques. J. Phys. Conf. Ser. 658(1), 1–9 (2015). https://doi.org/10.1088/1742-6596/658/1/012004

    Article  Google Scholar 

  11. Gelfusa, M., Murari, A., Malizia, A., Lungaroni, M., Peluso, E., Parracino, S., Vega, J., Gaudio, P.: Advanced signal processing based on support vector regression for LiDAR applications. Proc. SPIE. 9643, 1–11 (2015). https://doi.org/10.1117/12.2194501

    Article  Google Scholar 

  12. Gaudio, P., Malizia, A., Gelfusa, M., Murari, A., Parracino, S., Poggi, L.A., Lungaroni, M., Ciparisse, J.F., Di Giovanni, D., Cenciarelli, O., Carestia, M., Peluso, E., Gabbarini, V., Talebzadeh, S., Bellecci, C.: LiDAR and dial application for detection and identification: a proposal to improve safety and security. JINST. 12(1), 1–14 (2017). https://doi.org/10.1088/1748-0221/12/01/C01054

    Article  Google Scholar 

  13. Parracino, S., Gelfusa, M., Lungaroni, M., Peluso, E., Murari, A., Ciparisse, J.F., Malizia, A., Rossi, R., Gaudio, P.: First tests of a multiwavelength mini-DIAL system for the automatic detection of greenhouse gases. Proc. SPIE. 10424, 1–11 (2017). https://doi.org/10.1117/12.2278585

    Article  Google Scholar 

  14. Bellecci, C., Casella, L., Federico, S., Gaudio, P., Lo Feudo, T., Martellucci, S., Richetta, M.: Evolution study of a water vapor plume using a mobile CO2 DIAL system. Proc. SPIE. 4539, 180–190 (2002). https://doi.org/10.1117/12.454440

    Article  ADS  Google Scholar 

  15. Bellecci, C., Francucci, M., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., Lo Feudo, T.: Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm. Appl. Phys. B. 87(2), 373–378 (2007). https://doi.org/10.1007/s00340-007-2607-9

    Article  ADS  Google Scholar 

  16. COMSOL Multiphysics® Modeling Software.: https://www.comsol.it/

  17. Ciparisse, J.F., Malizia, A., Poggi, L.A., Cenciarelli, O., Gelfusa, M., Carestia, M.C., Di Giovanni, D., Mancinelli, S., Palombi, L., Bellecci, C., Gaudio, P.: Numerical simulations as tool to predict chemical and radiological hazardous diffusion in case of nonconventional events. Mod. Sim. Eng. 2016, 1–11 (2016). https://doi.org/10.1155/2016/6271853

    Article  Google Scholar 

  18. European Parliament, Council of the European Union: Directive 2006/25/EC of the European parliament and of the council of 5 April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Off. J. Eur. Union. L114, 38–59 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Parracino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parracino, S., Ciparisse, J.F., Gelfusa, M., Malizia, A., Richetta, M., Gaudio, P. (2018). Experimental Real-Time Tracking and Numerical Simulation of Hazardous Dust Dispersion in the Atmosphere. In: Malizia, A., D'Arienzo, M. (eds) Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference. Springer, Cham. https://doi.org/10.1007/978-3-319-91791-7_6

Download citation

Publish with us

Policies and ethics