Skip to main content

Humoral Primary Immunodeficiency and Autoimmune and Inflammatory Manifestations

  • Chapter
  • First Online:

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

A recent extensive analysis encompassing data on more than 2000 patients with PID in French national register revealed that about a quarter of those patients suffer from at least one autoimmune and inflammatory (A/I) conditions. The manifestations spanned through all known A/I symptoms with autoimmune cytopenia being the most frequent one, followed in frequency by gastrointestinal disorders, skin ailments, and rheumatic conditions. About a third of the affected patients did experience more than one A/I manifestation. The relative risk of developing A/I manifestation was 3- to 14-fold higher in patients with PIDs compared to the normal population. The A/I manifestations occurred throughout the life; by the age of 50 years, 40% of the patients were affected.

The treatment of patients presenting with immunodeficiency as well as autoimmunity or chronic inflammation is challenging as it needs to preserve a balance between infection susceptibility and needs for immunosuppression and includes immunoglobulin substitution, steroids, methotrexate, hydroxychloroquine, ciclosporin A or mycophenolate mofetil, rituximab, abatacept, rapamycin, baricitinib, and only in very severe cases hematopoietic stem cell transplantation (HSCT) or gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fischer A, Provot J, Jais JP, et al. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol. 2016;140:1388–93. https://doi.org/10.1016/j.jaci.2016.12.978.

    Article  CAS  Google Scholar 

  2. Picard C, Al-Herz W, Bousfiha A, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35:696–726. https://doi.org/10.1007/s10875-015-0201-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allenspach E, Torgerson TR. Autoimmunity and primary immunodeficiency disorders. J Clin Immunol. 2016;36:57–67. https://doi.org/10.1007/s10875-016-0294-1.

    Article  CAS  PubMed  Google Scholar 

  4. Fodil N, Langlais D, Gros P. Primary immunodeficiencies and inflammatory disease: a growing genetic intersection. Trends Immunol. 2016;37:126–40. https://doi.org/10.1016/j.it.2015.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grimbacher B, Warnatz K, Yong PFK, et al. The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol. 2016;137:3–17. https://doi.org/10.1016/j.jaci.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  6. Warnatz K, Voll RE. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol. 2012;3:1–6. https://doi.org/10.3389/fimmu.2012.00210.

    Article  Google Scholar 

  7. Marciano BE, Holland SM. Primary immunodeficiency diseases: current and emerging therapeutics. Front Immunol. 2017;8:937. https://doi.org/10.3389/fimmu.2017.00937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azizi G, Ziaee V, Tavakol M, et al. Approach to the management of autoimmunity in primary immunodeficiency. Scand J Immunol. 2017;85:13–29. https://doi.org/10.1016/j.aller.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  9. Vignesh P, Rawat A, Singh S. An update on the use of immunomodulators in primary immunodeficiencies. Clin Rev Allergy Immunol. 2017;52:287–303. https://doi.org/10.1007/s12016-016-8591-2.

    Article  CAS  PubMed  Google Scholar 

  10. Pac MM, Bernatowska EA, Kierkuś J, et al. Gastrointestinal disorders next to respiratory infections as leading symptoms of X-linked agammaglobulinemia in children – 34-year experience of a single center. Arch Med Sci. 2017;2:412–7. https://doi.org/10.5114/aoms.2016.60338.

    Article  Google Scholar 

  11. Barmettler S, Otani IM, Minhas J, et al. Gastrointestinal manifestations in X-linked Agammaglobulinemia. J Clin Immunol. 2017;37:287–94. https://doi.org/10.1007/s10875-017-0374-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hernandez-Trujillo VP, Scalchunes C, Cunningham-Rundles C, et al. Autoimmunity and inflammation in X-linked agammaglobulinemia. J Clin Immunol. 2014;34:627–32. https://doi.org/10.1007/s10875-014-0056-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De La Morena M, Haire RN, Ohta Y, et al. Predominance of sterile immunoglobulin transcripts in a female phenotypically resembling Bruton’s agammaglobulinemia. Eur J Immunol. 1995;25:809–15. https://doi.org/10.1002/eji.1830250327.

    Article  PubMed  Google Scholar 

  14. Conley ME, Dobbs AK, Quintana AM, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med. 2012;209:463–70. https://doi.org/10.1084/jem.20112533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jansen A, van Deuren M, Miller J, et al. Prognosis of Good syndrome: mortality and morbidity of thymoma associated immunodeficiency in perspective. Clin Immunol. 2016;171:12–7. https://doi.org/10.1016/j.clim.2016.07.025.

    Article  CAS  PubMed  Google Scholar 

  16. Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139:597–606.e4. https://doi.org/10.1016/j.jaci.2016.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138:210–218.e9. https://doi.org/10.1016/j.jaci.2016.03.022.

    Article  CAS  PubMed  Google Scholar 

  18. Buchbinder D, Stinson JR, Nugent DJ, et al. Mild B-cell lymphocytosis in patients with a CARD11 C49Y mutation. J Allergy Clin Immunol. 2015;136:819–821.e1. https://doi.org/10.1016/j.jaci.2015.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brohl AS, Stinson JR, Su HC, et al. Germline CARD11 mutation in a patient with severe congenital B cell lymphocytosis. J Clin Immunol. 2015;35:32–46. https://doi.org/10.1007/s10875-014-0106-4.

    Article  PubMed  Google Scholar 

  20. Snow AL, Xiao W, Stinson JR, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med. 2012;209:2247–61. https://doi.org/10.1084/jem.20120831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Revy P, Muto T, Levy Y, et al. Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2). Cell. 2000;102:565–75. https://doi.org/10.1016/S0092-8674(00)00079-9.

    Article  CAS  PubMed  Google Scholar 

  22. Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol. 2004;110:22–9. https://doi.org/10.1016/j.clim.2003.10.007.

    Article  CAS  PubMed  Google Scholar 

  23. Durandy A, Cantaert T, Kracker S, Meffre E. Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans. Autoimmunity. 2013;46:148–56. https://doi.org/10.3109/08916934.2012.750299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imai K, Slupphaug G, Lee W-I, et al. Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4:1023–8. https://doi.org/10.1038/ni974.

    Article  CAS  PubMed  Google Scholar 

  25. Gardes P, Forveille M, Alyanakian M-A, et al. Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol. 2012;188:2023–9. https://doi.org/10.4049/jimmunol.1102984.

    Article  CAS  PubMed  Google Scholar 

  26. Rahner N, Höefler G, Högenauer C, et al. Compound heterozygosity for two MSH6 mutations in a patient with early onset colorectal cancer, vitiligo and systemic lupus erythematosus. Am J Med Genet A. 2008;146A:1314–9. https://doi.org/10.1002/ajmg.a.32210.

    Article  CAS  PubMed  Google Scholar 

  27. Feuille EJ, Anooshiravani N, Sullivan KE, et al. Autoimmune cytopenias and associated conditions in CVID: a report from the USIDNET registry. J Clin Immunol. 2018;38:28–34. https://doi.org/10.1007/s10875-017-0456-9.

    Article  CAS  PubMed  Google Scholar 

  28. Vince N, Boutboul D, Mouillot G, et al. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127:538–541.e5. https://doi.org/10.1016/j.jaci.2010.10.019.

    Article  CAS  PubMed  Google Scholar 

  29. van Zelm MC, Smet J, Adams B, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120:1265–74. https://doi.org/10.1172/JCI39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salzer U, Bacchelli C, Buckridge S, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113:1967–76. https://doi.org/10.1182/blood-2008-02-141937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H-Y, Ma CA, Zhao Y, et al. Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci. 2013;110:5127–32. https://doi.org/10.1073/pnas.1221211110.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen K, Coonrod EM, Kumánovics A, et al. Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93:812–24. https://doi.org/10.1016/j.ajhg.2013.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. 2008;122:1082–6. https://doi.org/10.1016/j.jaci.2008.09.037.

    Article  CAS  PubMed  Google Scholar 

  34. Niehues T, Perez-Becker R, Schuetz C. More than just SCID—the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol. 2010;135:183–92. https://doi.org/10.1016/j.clim.2010.01.013.

    Article  CAS  PubMed  Google Scholar 

  35. Patel K, Akhter J, Kobrynski L, et al. Immunoglobulin deficiencies: the B-lymphocyte side of DiGeorge syndrome. J Pediatr. 2012;161:950–3. https://doi.org/10.1016/j.jpeds.2012.06.018.

    Article  CAS  PubMed  Google Scholar 

  36. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22q11.2 deletion syndrome. Scand J Immunol. 2007;66:1–7. https://doi.org/10.1111/j.1365-3083.2007.01949.x.

    Article  CAS  PubMed  Google Scholar 

  37. Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol. 2018;38:13–27. https://doi.org/10.1007/s10875-017-0453-z.

    Article  CAS  PubMed  Google Scholar 

  38. Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci. 2013;1285:26–43. https://doi.org/10.1111/nyas.12049.

    Article  CAS  PubMed  Google Scholar 

  39. Burns SO, Zarafov A, Thrasher AJ. Primary immunodeficiencies due to abnormalities of the actin cytoskeleton. Curr Opin Hematol. 2017;24:16–22. https://doi.org/10.1097/MOH.0000000000000296.

    Article  CAS  PubMed  Google Scholar 

  40. Dobbs K, Domínguez Conde C, Zhang S-Y, et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N Engl J Med. 2015;372:2409–22. https://doi.org/10.1056/NEJMoa1413462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol. 2017;181:75–82. https://doi.org/10.1016/j.clim.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stepensky P, Keller B, Buchta M, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131:477–485.e1. https://doi.org/10.1016/j.jaci.2012.11.050.

    Article  CAS  PubMed  Google Scholar 

  43. Dadi H, Jones TA, Merico D, et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol. 2017;141:1818. https://doi.org/10.1016/j.jaci.2017.06.047.

    Article  CAS  PubMed  Google Scholar 

  44. Feyder M, Goff L. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48. https://doi.org/10.1172/JCI77493.

    Article  Google Scholar 

  45. Fusco F, Pescatore A, Conte MI, et al. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-κB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol. 2015;34:445–59. https://doi.org/10.3109/08830185.2015.1055331.

    Article  CAS  PubMed  Google Scholar 

  46. Petersheim D, Massaad MJ, Lee S, et al. Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency canonical NF-κB pathway non-canonical NF-κB pathway. J Allergy Clin Immunol. 2017;141:1060. https://doi.org/10.1016/j.jaci.2017.05.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boisson B, Puel A, Picard C, Casanova JL. Human IκBα gain of function: a severe and syndromic immunodeficiency. J Clin Immunol. 2017;37:397–412. https://doi.org/10.1007/s10875-017-0400-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Willmann KL, Klaver S, Do UF, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360. https://doi.org/10.1038/ncomms6360.

    Article  PubMed  Google Scholar 

  49. Salzer E, Santos-Valente E, Keller B, et al. Protein kinase C δ: a gatekeeper of immune homeostasis. J Clin Immunol. 2016;36:631–40. https://doi.org/10.1007/s10875-016-0323-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jesus AA, Duarte AJS, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol. 2008;28:62–6. https://doi.org/10.1007/s10875-008-9171-x.

    Article  CAS  Google Scholar 

  51. Schepp J, Chou J, Skrabl-Baumgartner A, et al. 14 years after discovery: clinical follow-up on 15 patients with inducible co-stimulator deficiency. Front Immunol. 2017;8:964. https://doi.org/10.3389/fimmu.2017.00964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. 2014;34:772–9. https://doi.org/10.1007/s10875-014-0083-7.

    Article  CAS  PubMed  Google Scholar 

  53. Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol. 2015;35:331–8. https://doi.org/10.1007/s10875-015-0141-9.

    Article  CAS  PubMed  Google Scholar 

  54. Verma N, Burns SO, Walker LSK, Sansom DM. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol. 2017;190:1–7. https://doi.org/10.1111/cei.12997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gámez-Díaz L, August D, Stepensky P, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137:223–30. https://doi.org/10.1016/j.jaci.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  56. Alkhairy OK, Perez-Becker R, Driessen GJ, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol. 2015;136:703–712.e10. https://doi.org/10.1016/j.jaci.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  57. Salzer E, Kansu A, Sic H, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency–like disease caused by IL-21 deficiency. J Allergy Clin Immunol. 2014;133:1651–1659.e12. https://doi.org/10.1016/j.jaci.2014.02.034.

    Article  CAS  PubMed  Google Scholar 

  58. Kotlarz D, Ziętara N, Milner JD, Klein C. Human IL-21 and IL-21R deficiencies. Curr Opin Pediatr. 2014;26:704–12. https://doi.org/10.1097/MOP.0000000000000160.

    Article  CAS  PubMed  Google Scholar 

  59. Kotlarz D, Ziętara N, Uzel G, et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210:433–43. https://doi.org/10.1084/jem.20111229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Bruin AM, Voermans C, Nolte MA. Impact of interferon-g on hematopoiesis. Blood. 2014;124:2479–86. https://doi.org/10.1182/blood-2014-04.

    Article  PubMed  Google Scholar 

  61. Lorenzini T, Dotta L, Giacomelli M, et al. STAT mutations as program switchers: turning primary immunodeficiencies into autoimmune diseases. J Leukoc Biol. 2017;101:29–38. https://doi.org/10.1189/jlb.5RI0516-237RR.

    Article  CAS  PubMed  Google Scholar 

  62. Bride K, Teachey D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Research. 2017;6:1928. https://doi.org/10.12688/f1000research.11545.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Janda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janda, A., Rizzi, M. (2019). Humoral Primary Immunodeficiency and Autoimmune and Inflammatory Manifestations. In: D'Elios, M., Rizzi, M. (eds) Humoral Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-91785-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91785-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91784-9

  • Online ISBN: 978-3-319-91785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics