Malignancy in Predominantly Antibody Deficiencies (PAD)

  • Claudia WehrEmail author
Part of the Rare Diseases of the Immune System book series (RDIS)


Multiple case series and registry surveys address the incidence of malignancies in PID and lymphomas are reported frequently. Due to the rarity of PID, the results of many of the studies rely on relatively few patient numbers and might underlie a publication bias. A large registry study from the US reports that the incidence of the most common cancers in the general population (breast, colorectal, lung, prostate cancer) is not increased in PID patients, whereas the incidence of lymphoma, skin and thyroid cancer is significantly increased compared to the general population. While there is good evidence that patients with common variable immunodeficiency have an increased risk for B cell neoplasms and gastric adenocarcinoma, the data are less clear for other predominantly andibody deficiencies (PAD).


Lymphoma Thyroid cancer Gastric cancer CVID Thymoma Skin cancer 


  1. 1.
    Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Vortrag gehalten vor den Studenten der Amsterdamer Universitaet, Vereinigung fuer wissenschaftliche Arbeit 1 June 1908. Printed in: P. Ehrlich. Beitraege zur experimentellen Pathologie und Chemotherapie Akademische Verlagsgesellschaft, Leipzig 118–164Google Scholar
  2. 2.
    Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1:779–86.CrossRefGoogle Scholar
  3. 3.
    Kersey JH, Spector BD, Good RA. Primary immunodeficiency diseases and cancer: the immunodeficiency-cancer registry. Int J Cancer. 1973;12:333–47.CrossRefGoogle Scholar
  4. 4.
    Engels EA, Pfeiffer RM, Fraumeni JF Jr, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306:1891–901.CrossRefGoogle Scholar
  5. 5.
    Shiels MS, Pfeiffer RM, Gail MH, et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103:753–62.CrossRefGoogle Scholar
  6. 6.
    Majhail NS. Secondary cancers following allogeneic haematopoietic cell transplantation in adults. Br J Haematol. 2011;154:301–10.CrossRefGoogle Scholar
  7. 7.
    Hauck F, Voss R, Urban C, Seidel MG. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol. 2018;141:59–68.e4.CrossRefGoogle Scholar
  8. 8.
    Picard C, Al-Herz W, Bousfiha A, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35:696–726.CrossRefGoogle Scholar
  9. 9.
    Malphettes M, Gérard L, Carmagnat M, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49:1329–38.CrossRefGoogle Scholar
  10. 10.
    Bogaert DJA, Dullaers M, Lambrecht BN, et al. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. 2016; Scholar
  11. 11.
    Maffucci P, Filion CA, Boisson B, et al. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol. 2016;7:220.CrossRefGoogle Scholar
  12. 12.
    Pulvirenti F, Zuntini R, Milito C, et al. Clinical associations of Biallelic and Monoallelic TNFRSF13B variants in Italian primary antibody deficiency syndromes. J Immunol Res. 2016;2016:8390356.CrossRefGoogle Scholar
  13. 13.
    Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138:210–218e9.CrossRefGoogle Scholar
  14. 14.
    Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139:597–606e4.CrossRefGoogle Scholar
  15. 15.
    Mayor PC, Eng KH, Singel KL, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States immune deficiency network registry. J Allergy Clin Immunol. 2017; Scholar
  16. 16.
    Jonkman-Berk BM, van den Berg JM, Ten Berge IJM, et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156:154–62.CrossRefGoogle Scholar
  17. 17.
    Vajdic CM, Mao L, van Leeuwen MT, et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood. 2010;116:1228–34.CrossRefGoogle Scholar
  18. 18.
    Kersey JH, Shapiro RS, Filipovich AH. Relationship of immunodeficiency to lymphoid malignancy. Pediatr Infect Dis J. 1988;7:S10–2.CrossRefGoogle Scholar
  19. 19.
    Quinti I, Agostini C, Tabolli S, et al. Malignancies are the major cause of death in patients with adult onset common variable immunodeficiency. Blood. 2012;120:1953–4.CrossRefGoogle Scholar
  20. 20.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119:1650–7.CrossRefGoogle Scholar
  21. 21.
    Gathmann B, Mahlaoui N, Gérard L, et al. European Society for Immunodeficiencies Registry Working Party. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–26.CrossRefGoogle Scholar
  22. 22.
    Quinti I, Soresina A, Spadaro G, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27:308–16.CrossRefGoogle Scholar
  23. 23.
    Mellemkjaer L, Hammarstrom L, Andersen V, et al. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: a combined Danish and Swedish study. Clin Exp Immunol. 2002;130:495–500.CrossRefGoogle Scholar
  24. 24.
    Kinlen LJ, Webster AD, Bird AG, et al. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet. 1985;1:263–6.CrossRefGoogle Scholar
  25. 25.
    Gratzinger D, Jaffe ES, Chadburn A, et al. Primary/congenital immunodeficiency: 2015 SH/EAHP workshop report-part 5. Am J Clin Pathol. 2017;147:204–16.CrossRefGoogle Scholar
  26. 26.
    Suarez F, Lortholary O, Hermine O, Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood. 2006;107:3034–44.CrossRefGoogle Scholar
  27. 27.
    Wehr C, Gennery AR, Lindemans C, et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135:988–997e6.CrossRefGoogle Scholar
  28. 28.
    Fox TA, Chakraverty R, Burns S, et al. Successful outcome following allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency. Blood. 2018;131:917–31.CrossRefGoogle Scholar
  29. 29.
    Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77–85.CrossRefGoogle Scholar
  30. 30.
    Unger S, Seidl M, Schmitt-Graeff A, et al. Ill-defined germinal centers and severely reduced plasma cells are histological hallmarks of lymphadenopathy in patients with common variable immunodeficiency. J Clin Immunol. 2014;34:615–26.CrossRefGoogle Scholar
  31. 31.
    da Silva SP, Resnick E, Lucas M, et al. Lymphoid proliferations of indeterminate malignant potential arising in adults with common variable immunodeficiency disorders: unusual case studies and immunohistological review in the light of possible causative events. J Clin Immunol. 2011;31:784–91.CrossRefGoogle Scholar
  32. 32.
    Zullo A, Romiti A, Rinaldi V, et al. Gastric pathology in patients with common variable immunodeficiency. Gut. 1999;45:77–81.CrossRefGoogle Scholar
  33. 33.
    Dhalla F, da Silva SP, Lucas M, et al. Review of gastric cancer risk factors in patients with common variable immunodeficiency disorders, resulting in a proposal for a surveillance programme. Clin Exp Immunol. 2011;165:1–7.CrossRefGoogle Scholar
  34. 34.
    De Petris G, Dhungel BM, Chen L, Chang Y-HH. Gastric adenocarcinoma in common variable immunodeficiency: features of cancer and associated gastritis may be characteristic of the condition. Int J Surg Pathol. 2014;22:600–6.CrossRefGoogle Scholar
  35. 35.
    Hernandez-Trujillo VP, Scalchunes C, Cunningham-Rundles C, et al. Autoimmunity and inflammation in X-linked Agammaglobulinemia. J Clin Immunol. 2014; Scholar
  36. 36.
    Winkelstein JA, Marino MC, Lederman HM, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine. 2006;85:193–202.CrossRefGoogle Scholar
  37. 37.
    Gammon B, Robson A, Deonizio J, et al. CD8(+) granulomatous cutaneous T-cell lymphoma: a potential association with immunodeficiency. J Am Acad Dermatol. 2014;71:555–60.CrossRefGoogle Scholar
  38. 38.
    Park JY, Kim YS, Shin DH, et al. Primary cutaneous peripheral T-cell lymphoma in a patient with X-linked agammaglobulinaemia. Br J Dermatol. 2011;164:677–9.CrossRefGoogle Scholar
  39. 39.
    Kanavaros P, Rontogianni D, Hrissovergi D, et al. Extranodal cytotoxic T-cell lymphoma in a patient with X-linked agammaglobulinaemia. Leuk Lymphoma. 2001;42:235–8.CrossRefGoogle Scholar
  40. 40.
    van der Meer JW, Weening RS, Schellekens PT, et al. Colorectal cancer in patients with X-linked agammaglobulinaemia. Lancet. 1993;341:1439–40.CrossRefGoogle Scholar
  41. 41.
    Staines Boone AT, Torres Martínez MG, López Herrera G, et al. Gastric adenocarcinoma in the context of X-linked agammaglobulinemia: case report and review of the literature. J Clin Immunol. 2014;34:134–7.CrossRefGoogle Scholar
  42. 42.
    Bachmeyer C, Monge M, Cazier A, et al. Gastric adenocarcinoma in a patient with X-linked agammaglobulinaemia. Eur J Gastroenterol Hepatol. 2000;12:1033–5.CrossRefGoogle Scholar
  43. 43.
    Maarschalk-Ellerbroek LJ, Oldenburg B, Mombers IMH, et al. Outcome of screening endoscopy in common variable immunodeficiency disorder and X-linked agammaglobulinemia. Endoscopy. 2013;45:320–3.CrossRefGoogle Scholar
  44. 44.
    Hermaszewski RA, Webster AD. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med. 1993;86:31–42.Google Scholar
  45. 45.
    Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer Res. 2016;2:747–57.CrossRefGoogle Scholar
  46. 46.
    Slotta JE, Heine S, Kauffels A, et al. Gastrectomy with isoperistaltic jejunal parallel pouch in a 15-year-old adolescent boy with gastric adenocarcinoma and autosomal recessive agammaglobulinemia. J Pediatr Surg. 2011;46:e21–4.CrossRefGoogle Scholar
  47. 47.
    Boisson B, Wang Y-D, Bosompem A, et al. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR– B cells. J Clin Invest. 2013;123:4781–5.CrossRefGoogle Scholar
  48. 48.
    Dobbs AK, Bosompem A, Coustan-Smith E, et al. Agammaglobulinemia associated with BCR B cells and enhanced expression of CD19. Blood. 2011;118:1828–37.CrossRefGoogle Scholar
  49. 49.
    Malphettes M, Gérard L, Galicier L, et al. Good syndrome: an adult-onset immunodeficiency remarkable for its high incidence of invasive infections and autoimmune complications. Clin Infect Dis. 2015;61:e13–9.CrossRefGoogle Scholar
  50. 50.
    Kelleher P, Misbah SA. What is Good’s syndrome? Immunological abnormalities in patients with thymoma. J Clin Pathol. 2003;56:12–6.CrossRefGoogle Scholar
  51. 51.
    Wang H-Y, Ma CA, Zhao Y, et al. Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci U S A. 2013;110:5127–32.CrossRefGoogle Scholar
  52. 52.
    Brue T, Quentien M-H, Khetchoumian K, et al. Mutations in NFKB2 and potential genetic heterogeneity in patients with DAVID syndrome, having variable endocrine and immune deficiencies. BMC Med Genet. 2014;15:139.CrossRefGoogle Scholar
  53. 53.
    Chen K, Coonrod EM, Kumánovics A, et al. Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93:812–24.CrossRefGoogle Scholar
  54. 54.
    Quentien M-H, Delemer B, Papadimitriou DT, et al. Deficit in anterior pituitary function and variable immune deficiency (DAVID) in children presenting with adrenocorticotropin deficiency and severe infections. J Clin Endocrinol Metab. 2012;97:E121–8.CrossRefGoogle Scholar
  55. 55.
    Sadat MA, Moir S, Chun T-W, et al. Glycosylation, hypogammaglobulinemia, and resistance to viral infections. N Engl J Med. 2014;370:1615–25.CrossRefGoogle Scholar
  56. 56.
    De Praeter CM, Gerwig GJ, Bause E, et al. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet. 2000;66:1744–56.CrossRefGoogle Scholar
  57. 57.
    Wiseman DH, May A, Jolles S, et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood. 2013;122:112–23.CrossRefGoogle Scholar
  58. 58.
    Chakraborty PK, Schmitz-Abe K, Kennedy EK, et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood. 2014;124:2867–71.CrossRefGoogle Scholar
  59. 59.
    Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis. 2013;8:5.CrossRefGoogle Scholar
  60. 60.
    Bozzetti V, Bovo G, Vanzati A, et al. A new genetic mutation in a patient with Syndromic diarrhea and Hepatoblastoma. J Pediatr Gastroenterol Nutr. 2013;57 Scholar
  61. 61.
    Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced Cytidine Deaminase deficiency. Clin Immunol. 2004;110:22–9.CrossRefGoogle Scholar
  62. 62.
    Durandy A, Kracker S. Immunoglobulin class-switch recombination deficiencies. Arthritis Res Ther. 2012;14:218.CrossRefGoogle Scholar
  63. 63.
    Kracker S, Di Virgilio M, Schwartzentruber J, et al. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex. J Allergy Clin Immunol. 2015;135:998–1007.e6.CrossRefGoogle Scholar
  64. 64.
    Gardès P, Forveille M, Alyanakian M-A, et al. Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol. 2012;188:2023–9.CrossRefGoogle Scholar
  65. 65.
    Stavnezer-Nordgren J, Kekish O, Zegers BJ. Molecular defects in a human immunoglobulin kappa chain deficiency. Science. 1985;230:458–61.CrossRefGoogle Scholar
  66. 66.
    Snow AL, Xiao W, Stinson JR, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med. 2012;209:2247–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Department of Medicine I/Hematology, Oncology and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations