The B-Side of the Immune Response

  • Laura PatrussiEmail author
  • Nagaja CapitaniEmail author
  • Mario Milco D’Elios
  • Cosima T. Baldari
Part of the Rare Diseases of the Immune System book series (RDIS)


B lymphocytes have long been, and still are, known to play a crucial role in orchestrating the humoral immune responses. This concept arises from their ability to take advantage of interactions with the other immune cells to become antibody-producing plasma cells or memory B cells. This chapter focuses on the mechanisms by which B cells encounter, manage, and present antigens to T cells, to finally integrate both humoral and cellular immune responses. The intrinsic ability of B cells to actively interact with the other immune cells makes them the leading units of the immune system.


B lymphocyte Antigen Immune synapse Lymphoid organ 



The CTB lab is supported by grants from AIRC (IG 2014-15220), Telethon-Italy (Grant GGP1102) and ITT-Regione Toscana. The MMDE lab is supported by grants from the University of Florence and the Italian Ministry of Health.


  1. 1.
    von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3(11):867–78.CrossRefGoogle Scholar
  2. 2.
    Schröttner P, Leick M, Burger M. The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol. 2010;89(5):437–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30(2):264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev. 1997;156:11–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22(1):19–29.PubMedCrossRefGoogle Scholar
  7. 7.
    González SF, Degn SE, Pitcher LA, Woodruff M, Heesters BA, Carroll MC. Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol. 2011;29:215–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt EE, MacDonald IC, Groom AC. Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp. Scanning Microsc. 1993;7(2):613–28.PubMedGoogle Scholar
  9. 9.
    Cyster JG. B cell follicles and antigen encounters of the third kind. Nat Immunol. 2010;11(11):989–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonzalez SF, Pitcher LA, Mempel T, Schuerpf F, Carroll MC. B cell acquisition of antigen in vivo. Curr Opin Immunol. 2009;21(3):251–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.PubMedCrossRefGoogle Scholar
  12. 12.
    Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al. B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2011;13(2):170–80.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pape KA, Catron DM, Itano AA, Jenkins MK. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity. 2007;26(4):491–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Clark SL. The reticulum of lymph nodes in mice studied with the electron microscope. Am J Anat. 1962;110(3):217–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Farr AG, Cho Y, De Bruyn PP. The structure of the sinus wall of the lymph node relative to its endocytic properties and transmural cell passage. Am J Anat. 1980;157(3):265–84.PubMedCrossRefGoogle Scholar
  16. 16.
    van Ewijk W, Brekelmans PJ, Jacobs R, Wisse E. Lymphoid microenvironments in the thymus and lymph node. Scanning Microsc. 1988;2(4):2129–40.PubMedGoogle Scholar
  17. 17.
    Anderson AO, Anderson ND. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol. 1975;80(3):387–418.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Carrasco YR, Batista FD. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity. 2007;27(1):160–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Phan TG, Grigorova I, Okada T, Cyster JG. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol. 2007;8(9):992–1000.PubMedCrossRefGoogle Scholar
  21. 21.
    Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 2007;450(7166):110–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG. Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med. 2009;206(7):1485–93.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE, Kim Y-A, et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol. 2010;11(5):427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ferguson JS, Weis JJ, Martin JL, Schlesinger LS. Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun. 2004;72(5):2564–73.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Heesters BA, van der Poel CE, Das A, Carroll MC. Antigen presentation to B cells. Trends Immunol. 2016;37(12):844–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Cinamon G, Zachariah MA, Lam OM, Foss FW, Cyster JC, Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008;9(1):54–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoogeboom R, Tolar P. Molecular mechanisms of B cell antigen gathering and endocytosis. Cham: Springer; 2015. p. 45–63.Google Scholar
  28. 28.
    Hobeika E, Maity PC, Jumaa H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol. 2016;37(5):310–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell. 2004;117(6):787–800.PubMedCrossRefGoogle Scholar
  30. 30.
    Treanor B, Depoil D, Bruckbauer A, Batista FD. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med. 2011;208(5):1055–68.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010;467(7314):465–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity. 2010;32(2):187–99.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tolar P, Sohn HW, Pierce SK. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol. 2005;6(11):1168–76.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Schamel WW, Reth M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity. 2000;13(1):5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Basu R, Huse M. Mechanical communication at the immunological synapse. Trends Cell Biol. 2017;27(4):241–54.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411(6836):489–94.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yuseff MI, Lankar D, Lennon-Duménil AM. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic. 2009;10(6):629–36.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tolar P, Sohn HW, Liu W, Pierce SK. The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev. 2009;232:34–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Avalos AM, Bilate AM, Witte MD, Tai AK, He J, Frushicheva MP, et al. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J Exp Med. 2014;211(2):365–79.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Avalos AM, Ploegh HL. Early BCR events and antigen capture, processing, and loading on MHC class II on B cells. Front Immunol. 2014;5:1–5.CrossRefGoogle Scholar
  41. 41.
    Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol. 1990;8(c):773–93.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD. B cell ligand discrimination through a spreading and contraction response. Science. 2006;312(5774):738–41.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL, et al. CD19 is essential for B cell activation by promoting B cell receptor–antigen microcluster formation in response to membrane-bound ligand. Nat Immunol. 2008;9(1):63–72.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang J, Sohn H, Sun G, Milner JD, Pierce SK. The autoinhibitory C-terminal SH2 domain of phospholipase C-2 stabilizes B cell receptor signalosome assembly. Sci Signal. 2014;7(343):ra89.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xu S, Huo J, Chew W-K, Hikida M, Kurosaki T, Lam K-P. Phospholipase Cgamma2 dosage is critical for B cell development in the absence of adaptor protein BLNK. J Immunol. 2006;176(8):4690–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Scharenberg AM, Humphries LA, Rawlings DJ. Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol. 2007;7(10):778–89.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yuseff M-I, Pierobon P, Reversat A, Lennon-Duménil A-M. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol. 2013;13(7):475–86.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Freeman SA, Lei V, Dang-Lawson M, Mizuno K, Roskelley CD, Gold MR. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J Immunol. 2011;187(11):5887–900.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Pore D, Parameswaran N, Matsui K, Stone MB, Saotome I, McClatchey AI, et al. Ezrin tunes the magnitude of humoral immunity. J Immunol. 2013;191(8):4048–58.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Arana E, Vehlow A, Harwood NE, Vigorito E, Henderson R, Turner M, et al. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity. 2008;28(1):88–99.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Burbage M, Keppler SJ, Gasparrini F, Martínez-Martín N, Gaya M, Feest C, et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J Exp Med. 2015;212(1):53–72.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Weber M, Treanor B, Depoil D, Shinohara H, Harwood NE, Hikida M, et al. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med. 2008;205(4):853–68.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20(5):589–99.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Carrasco YR, Batista FD. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 2006;25(4):889–99.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lin KBL, Freeman SA, Zabetian S, Brugger H, Weber M, Lei V, et al. The Rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity. 2008;28(1):75–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Saez de Guinoa J, Barrio L, Carrasco YR. Vinculin arrests motile B cells by stabilizing integrin clustering at the immune synapse. J Immunol. 2013;191(5):2742–51.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Randall KL, Lambe T, Johnson AL, Johnson A, Treanor B, Kucharska E, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Reversat A, Yuseff M-I, Lankar D, Malbec O, Obino D, Maurin M, et al. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell. 2015;26(7):1273–85.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ritter AT, Asano Y, Lippincott-Schwartz J, Griffiths GM, Stinchcombe JC, Dieckmann NMg, et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity. 2015;42(5):864–76.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443(7110):462–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bertrand F, Esquerre M, Petit A-E, Rodrigues M, Duchez S, Delon J, et al. Activation of the ancestral polarity regulator protein kinase C at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J Immunol. 2010;185(5):2887–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Huse M. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Front Immunol. 2012;3:235.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Stowers L, Yelon D, Berg LJ, Chant J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Cell Biol. 1995;92:5027–31.Google Scholar
  64. 64.
    Yuseff M-I, Reversat A, Lankar D, Diaz J, Fanget I, Pierobon P, et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity. 2011;35(3):361–74.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wang JC, Lee JY-J, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, et al. The Rap1-cofilin pathway coordinates actin reorganization and MTOC polarization at the B-cell immune synapse. J Cell Sci. 2017;130(6):1094–109.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Schnyder T, Castello A, Feest C, Harwood NE, Oellerich T, Urlaub H, et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity. 2011;34(6):905–18.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, et al. Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A. 2006;103(40):14883–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martín-Cófreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordón-Alonso M, Sung CH, et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol. 2008;182(5):951–62.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Quann EJ, Merino E, Furuta T, Huse M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol. 2009;10(6):627–35.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yi J. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol. 2013;202(5):779–92.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Seeley-Fallen MK, Liu LJ, Shapiro MR, Onabajo OO, Palaniyandi S, Zhu X, et al. Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc Natl Acad Sci U S A. 2014;111(27):9881–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CIM, et al. N-WASP is essential for the negative regulation of B cell receptor Signaling. PLoS Biol. 2013;11(11):e1001704.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood. 2011;118(6):1560–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Natkanski E, Lee W-Y, Mistry B, Casal A, Molloy JE, Tolar P. B cells use mechanical energy to discriminate antigen affinities. Science. 2013;340(6140):1587–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nowosad CR, Spillane KM, Tolar P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat Immunol. 2016;17:870–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yuseff MI, Lennon-Duménil AM. B cells use conserved polarity cues to regulate their antigen processing and presentation functions. Front Immunol. 2015;6:251.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Cocucci E, Aguet F, Boulant S, Kirchhausen T. The first five seconds in the life of a clathrin-coated pit. Cell. 2012;150(3):495–507.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 2001;11(7):294–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.PubMedCrossRefGoogle Scholar
  81. 81.
    Bakke O, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990;63(4):707–16.CrossRefPubMedGoogle Scholar
  82. 82.
    McCormick PJ, Martina JA, Bonifacino JS. Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc Natl Acad Sci U S A. 2005;102(22):7910–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Neefjes J. CIIV, MIIC and other compartments for MHC class II loading. Eur J Immunol. 1999;29(5):1421–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Manoury B, Mazzeo D, Li DN, Billson J, Loak K, Benaroch P, et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity. 2003;18(4):489–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Lennon-Duménil A-M, Bakker AH, Maehr R, Fiebiger E, Overkleeft HS, Rosemblatt M, et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J Exp Med. 2002;196(4):529–40.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell. 1995;82(1):155–65.PubMedCrossRefGoogle Scholar
  87. 87.
    Guce AI, Mortimer SE, Yoon T, Painter CA, Jiang W, Mellins ED, et al. HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol. 2013;20(1):90–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Denzin LK, Hammond C, Cresswell P. HLA-DM interactions with intermediates in HLA-DR maturation and a role for HLA-DM in stabilizing empty HLA-DR molecules. J Exp Med. 1996;184(6):2153–65.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pashine A, Busch R, Belmares MP, Munning JN, Doebele RC, Buckingham M, et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity. 2003;19(2):183–92.PubMedCrossRefGoogle Scholar
  90. 90.
    Bryant P, Ploegh H. Class II MHC peptide loading by the professionals. Curr Opin Immunol. 2004;16(1):96–102.PubMedCrossRefGoogle Scholar
  91. 91.
    Jiang W, Strohman MJ, Somasundaram S, Ayyangar S, Hou T, Wang N, et al. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Sci Rep. 2015;5(1):17333.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kropshofer H, Arndt SO, Moldenhauer G, Hämmerling GJ, Vogt AB. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH. Immunity. 1997;6(3):293–302.PubMedCrossRefGoogle Scholar
  93. 93.
    Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature. 1995;375(6534):802–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Yin L, Maben ZJ, Becerra A, Stern LJ. Evaluating the role of HLA-DM in MHC class II–peptide association reactions. J Immunol. 2015;195(2):706–16.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Denzin LK, Sant’Angelo DB, Hammond C, Surman MJ, Cresswell P. Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science. 1997;278(5335):106–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Chen X, Laur O, Kambayashi T, Li S, Bray RA, Weber DA, et al. Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J Exp Med. 2002;195(8):1053–62.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol. 2014;26:115–22.PubMedCrossRefGoogle Scholar
  98. 98.
    Craiu A, Akopian T, Goldberg A, Rock KL. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci U S A. 1997;94(20):10850–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell. 1999;96(5):635–44.PubMedCrossRefGoogle Scholar
  100. 100.
    Arora S, Lapinski PE, Raghavan M. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation. Proc Natl Acad Sci U S A. 2001;98(13):7241–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Higgins CF, Linton KJ. The ATP switch model for ABC transporters. Nat Struct Mol Biol. 2004;11(10):918–26.PubMedCrossRefGoogle Scholar
  102. 102.
    Diedrich G, Bangia N, Pan M, Cresswell P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J Immunol. 2001;166(3):1703–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Hughes EA, Cresswell P. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol. 1998;8(12):709–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5(2):103–14.PubMedCrossRefGoogle Scholar
  105. 105.
    Momburg F, Tan P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol. 2002;39(3–4):217–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Leone P, Shin E-C, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105(16):1172–87.PubMedCrossRefGoogle Scholar
  107. 107.
    Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30(1):429–57.PubMedCrossRefGoogle Scholar
  108. 108.
    Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005;23:127–59.PubMedCrossRefGoogle Scholar
  109. 109.
    Okada T, Cyster JG. B cell migration and interactions in the early phase of antibody responses. Curr Opin Immunol. 2006;18(3):278–85.PubMedCrossRefGoogle Scholar
  110. 110.
    Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG, Kleinstein SH, et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity. 2011;34(6):947–60.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Green JA, Cyster JG. S1PR2 links germinal center confinement and growth regulation. Immunol Rev. 2012;247(1):36–51.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mempel TR, Henrickson SE, von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427(6970):154–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Dustin ML, Choudhuri K. Signaling and polarized communication across the T cell immunological synapse. Annu Rev Cell Dev Biol. 2016;32(1):303–25.PubMedCrossRefGoogle Scholar
  114. 114.
    Kupfer H, Monks CR, Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med. 1994;179(5):1507–15.PubMedCrossRefGoogle Scholar
  115. 115.
    Kupfer A, Mosmann TR, Kupfer H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A. 1991;88(3):775–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gardell JL, Parker DC. CD40L is transferred to antigen-presenting B cells during delivery of T-cell help. Eur J Immunol. 2017;47(1):41–50.PubMedCrossRefGoogle Scholar
  117. 117.
    Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol. 2010;189(3):399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Bannard O, McGowan SJ, Ersching J, Ishido S, Victora GD, Shin J-S, et al. Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. J Exp Med. 2016;213(6):993–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15(3):160–71.PubMedCrossRefGoogle Scholar
  121. 121.
    McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol. 2015;16(3):296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 2015;15(3):149–59.PubMedCrossRefGoogle Scholar
  123. 123.
    Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol. 2007;23(1):495–517.PubMedCrossRefGoogle Scholar
  124. 124.
    Randall TD, Carragher DM, Rangel-Moreno J, Randall T. Development of secondary lymphoid organs. Annu Rev Immunol. 2008;26:627–50.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kellermayer Z, Vojkovics D, Balogh P. Innate lymphoid cells and their stromal microenvironments. Immunol Lett. 2017;189:3–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Blonska M, Agarwal NK, Vega F. Shaping of the tumor microenvironment: stromal cells and vessels. Semin Cancer Biol. 2015;34:3–13.PubMedCrossRefGoogle Scholar
  127. 127.
    Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2015;1863(3):401–13.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:17008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations