Skip to main content

Basic Concepts on Manifolds, Spacetimes, and Calculus of Variations

  • Chapter
  • First Online:
  • 875 Accesses

Part of the book series: Progress in Mathematical Physics ((PMP,volume 73))

Abstract

In the present book, we are interested in continuum physics namely mechanics, gravitation, electromagnetism and their mutual interaction. Most of field equations governing theoretical physics are deduced from a variational principle after defining a suitable Lagrangian density \(\mathscr {L}\) and its arguments. Three steps are considered for deriving the field equations governing their evolution and mutual interaction. The first focus on the continuum geometry and by the way the spacetime with the concept of reference frame where physics happen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is worth noting that covariant components of event hold as (x 0 = ct, x 1 = −x 1, x 2 = −x 2, x 3 = −x 3) in this flat Minkowskian spacetime \(\mathscr {M}\).

  2. 2.

    Given the two groups \(\mathbb {R}^{1,3}\) and \(\mathcal {S}\mathcal {O}^{+} (1,3)\) such \(\mathbb {R}^{1,3} \cap \mathcal {S}\mathcal {O}^{+} (1,3) = \left \{ \mathbb {I} \right \}\), the semi-direct product of \(\mathbb {R}^{1,3}\) and \(\mathcal {S}\mathcal {O}^{+} (1,3)\) is a group denoted and with its element:

    $$\displaystyle \begin{aligned} \mathcal{S}\mathcal{O}^{+} (1,3) \ \ltimes\ \mathbb{R}^{1,3} := \left\{ g = l \ k \in \mathcal{S}\mathcal{O}^{+} (1,3) \ \ltimes\ \mathbb{R}^{1,3}, \mathrm{where}\ { } k \in \mathcal{S}\mathcal{O}^{+} (1,3), l \in \mathbb{R}^{1,3} \right\}. \end{aligned}$$
  3. 3.

    In relativistic mechanics, dust is usually defined as a set of particles forming a perfect fluid with zero pressure and with no interaction between them. Particles move independently each other.

References

  • Agiasofitou EK, Lazar M (2009) Conservation and balance laws in linear elasticity. J Elast 94:69–85

    Article  MathSciNet  Google Scholar 

  • Amendola L, Enqvist K, Koivisto T (2011) Unifying Einstein and Palatini gravities. Phys Rev D 83:044016(1)–044016(14)

    Article  Google Scholar 

  • Andringa R, Bergshoeff E, Panda S, de Roo M (2011) Newtonian gravity and the Bargmann algebra. Classical Quantum Gravity 28:105011 (12pp)

    Article  MathSciNet  Google Scholar 

  • Antonio TN, Rakotomanana L (2011) On the form-invariance of Lagrangian function for higher gradient continuum. In: Altenbach H, Maugin G, Erofeev V (eds) Mechanics of generalized continua. Springer, New York, pp 291–322

    Google Scholar 

  • Appleby PG (1977) Inertial frames in classical mechanics. Arch Ration Mech Anal 67(4):337–350

    Article  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  • Bain J (2004) Theories of Newtonian gravity and empirical indistinguishability. Stud Hist Philos Mod Phys 35:345–376

    Article  MathSciNet  Google Scholar 

  • Barra F, Caru A, Cerda MT, Espinoza R, Jara A, Lund F, Mujica N (2009) Measuring dislocations density in aluminium with resonant ultrasound spectroscopy. Int J Bifurcation Chaos 19(10):3561–3565

    Article  Google Scholar 

  • Bernal AN, Sánchez M (2003) Leibnizian, Galilean, and Newtonian structures of spacetime. J Math Phys 44(3):1129–1149

    Article  MathSciNet  Google Scholar 

  • Bideau N, Le Marrec L, Rakotomanana L (2011) Influence of finite strain on vibration of a bounded Timoshenko beam. Int J Solids Struct 48:2265–2274

    Article  Google Scholar 

  • Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc R Soc Lond A 231:263–273

    Article  MathSciNet  Google Scholar 

  • Brading KA, Ryckman TA (2008) Hilbert’s “Foundations of Physics”: gravitation and electromagnetism within the axiomatic method. Stud Hist Philos Mod Phys 39:102–153

    Article  MathSciNet  Google Scholar 

  • Bruzzo U (1987) The global Utiyama theorem in Einstein–Cartan theory. J Math Phys 28(9):2074–2077

    Article  MathSciNet  Google Scholar 

  • Capoziello S, De Laurentis D (2011) Extended theories of gravity. Phys Rep 509:167–321

    Article  MathSciNet  Google Scholar 

  • Carter B, Quintana H (1977) Gravitational and acoustic waves in an elastic medium. Phys Rev D 16(10):2928–2938

    Article  Google Scholar 

  • Challamel N, Rakotomanana L, Le Marrec L (2009) A dispersive wave equation using nonlocal elasticity. Académie des Sciences de Paris: Comptes Rendus Mécanique 337(8):591–595

    Google Scholar 

  • Cho YM (1976a) Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys Rev D 14(10):2521–2525

    Article  MathSciNet  Google Scholar 

  • Cho YM (1976b) Gauge theory of Poincaré symmetry. Phys Rev D 14(12):3335–3340

    Article  Google Scholar 

  • Cho YM (1976c) Gauge theory, gravitation, and symmetry. Phys Rev D 14(12):3341–3344

    Article  Google Scholar 

  • Clayton JD, Bammann DJ, McDowell DL (2004) Anholonomic configuration spaces and metric tensors in finite elastoplasticity. Int J Non-Linear Mech 39:1039–1049

    Article  MathSciNet  Google Scholar 

  • Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85(33–35):3983–4010

    Article  Google Scholar 

  • Cordero NM, Forest S, Busso EP (2016) Second strain gradient elasticity of nano-objects. J Mech Phys Solids 97:92–124

    Article  MathSciNet  Google Scholar 

  • Defrise P (1953) Analyse géométrique de la cinématique des milieux continus. Institut Royal Météorologique de Belgique – Publications Série B 6:5–63

    MathSciNet  Google Scholar 

  • Dirac PAM (1974) An action principle for the motion of particles. Gen Relativ Gravit 5(6):741–748

    Article  MathSciNet  Google Scholar 

  • Dixon WG (1975) On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Commun Math Phys 45:167–182

    Article  MathSciNet  Google Scholar 

  • Ehlers J (1973) The nature and concept of spacetime. In: Mehra J (ed) The Physicist’s concept of nature. Reidel Publishing Company, Dordrecht, pp 71–91

    Chapter  Google Scholar 

  • Exirifard Q, Sheikh-Jabbari MM (2008) Lovelock gravity at the crossroads of Palatini and metric formulations. Phys Lett B 661:158–161

    Article  MathSciNet  Google Scholar 

  • Forger M, Römer H (2004) Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem. Ann Phys 309:306–389

    Article  MathSciNet  Google Scholar 

  • Futhazar G, Le Marrec L, Rakotomanana-Ravelonarivo L (2014) Covariant gradient continua applied to wave propagation within defective material. Arch Appl Mech 84(9–11):1339–1356

    Article  Google Scholar 

  • Goenner HFM (1984) A variational principle for Newton–Cartan theory. Gen Relativ Gravit 16(6):513–526

    Article  MathSciNet  Google Scholar 

  • Gonseth F (1926) Les fondements des mathématiqes: De la géométrie d’Euclide à la relativité générale et à l’intuitionisme Ed. Albert Blanchard, Paris

    MATH  Google Scholar 

  • Havas P (1964) Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev Mod Phys 36:938–965

    Article  MathSciNet  Google Scholar 

  • Hayashi K, Shirafuji T (1979) New general relativity. Phys Rev D 19:3524–3553

    Article  MathSciNet  Google Scholar 

  • Hehl FW, Kerlick GD (1976/1978) Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen Relativ Gravit 9(8):691–710

    Article  Google Scholar 

  • Hehl FW, von der Heyde P (1973) Spin and the structure of spacetime. Ann Inst Henri Poincaré Sect A 19(2):179–196

    Google Scholar 

  • Hehl FW, von der Heyde P, Kerlick GD, Nester JM (1976) General relativity with spin and torsion: foundations and prospects. Rev Mod Phys 48(3):393–416

    Article  MathSciNet  Google Scholar 

  • Javili A, dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61:2381–2401

    Article  MathSciNet  Google Scholar 

  • Kadianakis ND (1996) The kinematics of continua and the concept of connection on classical spacetime. Int J Eng Sci 34(3):289–298

    Article  MathSciNet  Google Scholar 

  • Katanaev MO, Volovich IV (1992) Theory of defects in solids and three-dimensional gravity. Ann Phys 216:1–28

    Article  MathSciNet  Google Scholar 

  • Kibble TWB (1961) Lorentz invariance and gravitational field. J Math Phys 3(2):212–221

    Article  MathSciNet  Google Scholar 

  • Kleinert H (2000) Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion. Gen Relativ Gravit 32(5):769–839

    Article  MathSciNet  Google Scholar 

  • Kleinert H (2008) Multivalued fields: in condensed matter, electromagnetism, and gravitation. World Scientific, Singapore

    Book  Google Scholar 

  • Kleman M, Friedel J (2008) Disclinations, dislocations, and continuous defects: a reappraisal. Rev Mod Phys 80:61–115

    Article  MathSciNet  Google Scholar 

  • Kobelev V On the Lagrangian and instability of medium with defects. Meccanica. https://doi.org/10.1007/s11012-011-9480-7

  • Krause J (1976) Christoffel symbols and inertia in flat spacetime theory. Int J Theor Phys 15(11):801–807

    Article  Google Scholar 

  • Lazar M, Anastassiadis C (2008) The gauge theory of dislocations: conservation and balance laws. Philos Mag 88(11):1673–1699

    Article  Google Scholar 

  • Le KC, Stumpf H (1996) On the determination of the crystal reference in nonlinear continuum theory of dislocations. Proc R Soc Lond A 452:359–37

    Article  Google Scholar 

  • Lehmkuhl D (2011) Mass-energy-momentum in general relativity. Only there because of spacetime? Br J Philos Sci 62(3):453–488

    Article  MathSciNet  Google Scholar 

  • Logunov AA, Mestvirishvili MA (2012) Hilbert’s causality principle and equations of general relativity exclude the possibility of black hole formation. Theor Math Phys 170(3):413–419

    Article  MathSciNet  Google Scholar 

  • Lovelock D (1971) The Einstein tensor and its generalizations. J Math Phys 12:498–501

    Article  MathSciNet  Google Scholar 

  • Lovelock D, Rund H (1975) Tensors, differential forms, and variational principles, chap 8. Wiley, New York

    MATH  Google Scholar 

  • Malyshev C (2000) The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann Phys 286:249–277

    Article  MathSciNet  Google Scholar 

  • Manoff S (2001a) Frames of reference in spaces with affine connections and metrics. Classical Quantum Gravity 18:1111–1125

    Article  MathSciNet  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Maugin GA (1978) Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann Inst Henri Poincaré Sect A 28(2):155–185

    MathSciNet  MATH  Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, London

    Book  Google Scholar 

  • Metrikine AV (2006) On causality of the gradient elasticity models. J Sound Vib 297:727–742

    Article  MathSciNet  Google Scholar 

  • Minazzoli O, Karko T (2012) New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys Rev D 86:087502/1-4

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Nakahara (1996) Geometry, topology, and physics. In: Brower D (ed) Graduate student series in physics. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Noll W (1967) Materially uniform simple bodies with inhomogeneities. Arch Ration Mech Anal 27:1–32

    Article  MathSciNet  Google Scholar 

  • Obukhov YN, Puetzfeld D (2014) Conservation laws in gravity: a unified framework. Phys Rev D 90(02004):1–10

    Google Scholar 

  • Obukhov YN, Ponomariev VN, Zhytnikov VV (1989) Quadratic Poincaré gauge theory of gravity: a comparison with the general relativity theory. Gen Relativ Gravit 21(11):1107–1142

    Article  Google Scholar 

  • Pellegrini YP (2012) Screw and edge dislocations with time-dependent core width: from dynamical core equations to an equation of motion. J Mech Phys Solids 60:227–249

    Article  MathSciNet  Google Scholar 

  • Pettey D (1971) One-one-mappings onto locally connected generalized continua. Pac J Math 50(2):573–582

    Article  MathSciNet  Google Scholar 

  • Polizzotto C (2012) A gradient elasticity theory for second-grade materials and higher order inertia. Int J Solids Struct 49:2121–2137

    Article  Google Scholar 

  • Polyzos D, Fotiadis DI (2012) Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int J Solids Struct 49:470–480

    Article  Google Scholar 

  • Pons JM (2011) Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory. J Math Phys 52:012904-1/21

    Article  MathSciNet  Google Scholar 

  • Rakotomanana RL (1997) Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch Ration Mech Anal 141:199–236

    Article  MathSciNet  Google Scholar 

  • Rakotomanana RL (2003) A geometric approach to thermomechanics of dissipating continua. Progress in Mathematical Physics Series. Birkhaüser, Boston

    Google Scholar 

  • Rakotomanana RL (2005) Some class of SG continuum models to connect various length scales in plastic deformation. In: Steinmann P, Maugin GA (ed) Mechanics of material forces, chap 32. Springer, Berlin

    Google Scholar 

  • Rosen G (1972) Galilean invariance and the general covariance of nonrelativistic laws. Am J Phys 40:683–687

    Article  Google Scholar 

  • Ross DK (1989) Planck’s constant, torsion, and space-time defects. Int J Theor Phys 28(11):1333–1340

    Article  Google Scholar 

  • Ruedde C, Straumann N (1997) On Newton–Cartan cosmology. Helv Phys Acta 71(1–2):318–335

    MathSciNet  MATH  Google Scholar 

  • Ruggiero ML, Tartaglia A (2003) Einstein–Cartan as theory of defects in spacetime. Am J Phys 71(12):1303–1313

    Article  Google Scholar 

  • Ryder L (2009) Introduction to general relativity. Cambridge University Press, New York

    Book  Google Scholar 

  • Shapiro IL (2002) Physical aspects of spacetime torsion. Phys Rep 357:113–213

    Article  MathSciNet  Google Scholar 

  • Sharma P, Ganti S (2005) Gauge-field-theory solution of the elastic state of a screw dislocation in a dispersive (non-local) crystalline solid. Proc R Soc Lond 461:1–15

    Article  MathSciNet  Google Scholar 

  • Shen W, Moritz H (1996) On the separation of gravitation and inertia and the determination of the relativistic gravity field in the case of free motion. J Geod 70:633–644

    Article  Google Scholar 

  • Sotiriou TP, Li B, Barrow JD (2011) Generalizations of tele parallel gravity and local Lorentz symmetry. Phys Rev D 83:104030/1-104030/6

    Google Scholar 

  • Tamanini N (2012) Variational approach to gravitational theories with two independent connections. Phys Rev D 86:024004/1-9

    Google Scholar 

  • Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  Google Scholar 

  • Utiyama R (1956) Invariant theoretical interpretation of interaction. Phys Rev 101:1597–1607

    Article  MathSciNet  Google Scholar 

  • Verçyn A (1990) Metric-torsion gauge theory of continuum line defects. Int J Theor Phys 29(1):7–21

    Article  MathSciNet  Google Scholar 

  • Wang CC (1967) Geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations. Arch Ration Mech Anal 27:33–94

    Article  MathSciNet  Google Scholar 

  • Westman H, Sonego S (2009) Coordinates, observables and symmetry in relativity. Ann Phys 324:1585–1611

    Article  MathSciNet  Google Scholar 

  • Weyl H (1929) Gravitation and the electron. Proc Natl Acad Sci 15:323–334

    Article  Google Scholar 

  • Williams G (1973) A discussion of causality and the Lorentz group. Int J Theor Phys 7(6):415–421

    Article  MathSciNet  Google Scholar 

  • Williams DN (1989) The elastic energy-momentum tensor in special relativity. Ann Phys 196:345–360

    Article  MathSciNet  Google Scholar 

  • Yang G, Duan Y, Huang Y (1998) Topological invariant in Riemann–Cartan manifold and spacetime defects. Int J Theor Phys 37(12):2953–2964

    Article  Google Scholar 

  • Zeeman EC (1964) Causality implies the Lorentz group. J Math Phys 5(4):490–493

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

R. Rakotomanana, L. (2018). Basic Concepts on Manifolds, Spacetimes, and Calculus of Variations. In: Covariance and Gauge Invariance in Continuum Physics. Progress in Mathematical Physics, vol 73. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-91782-5_2

Download citation

Publish with us

Policies and ethics