Skip to main content

Signal Processing for Radio Astronomy

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

Radio astronomy is known for its very large telescope dishes but is currently making a transition towards the use of a large number of small antennas. For example, the Low Frequency Array, commissioned in 2010, uses about 50 stations each consisting of 96 low band antennas and 768 or 1536 high band antennas. The low-frequency receiving system for the future Square Kilometre Array is envisaged to initially consist of over 131,000 receiving elements and to be expanded later. These instruments pose interesting array signal processing challenges. To present some aspects, we start by describing how the measured correlation data is traditionally converted into an image, and translate this into an array signal processing framework. This paves the way to describe self-calibration and image reconstruction as estimation problems. Self-calibration of the instrument is required to handle instrumental effects such as the unknown, possibly direction dependent, response of the receiving elements, as well a unknown propagation conditions through the Earth’s troposphere and ionosphere. Array signal processing techniques seem well suited to handle these challenges. Interestingly, image reconstruction, calibration and interference mitigation are often intertwined in radio astronomy, turning this into an area with very challenging signal processing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With abuse of notation, as m, n are not related to the time variables used earlier.

References

  1. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA (1994)

    Book  Google Scholar 

  2. Bartholomew, D.J., Knott, M., Moustaki, I.: Latent Variable Models and Factor Analysis: A Unified Approach. John Wiley and Sons (2011)

    Google Scholar 

  3. Ben-David, C., Leshem, A.: Parametric high resolution techniques for radio astronomical imaging. IEEE Journal of Selected Topics in Signal Processing 2(5), 670–684 (2008)

    Article  Google Scholar 

  4. Blahut, R.E.: Theory of remote image formation. Cambridge University Press (2004). ISBN 0521553733

    Google Scholar 

  5. Boonstra, A.J.: Radio frequency interference mitigation in radio astronomy. Ph.D. thesis, TU Delft, Dept. EEMCS (2005). ISBN 90-805434-3-8

    Google Scholar 

  6. Boonstra, A.J., van der Veen, A.J.: Gain calibration methods for radio telescope arrays. IEEE Transactions on Signal Processing 51(1), 25–38 (2003)

    Article  Google Scholar 

  7. Boonstra, A.J., Wijnholds, S.J., van der Tol, S., Jeffs, B.: Calibration, sensitivity and RFI mitigation requirements for LOFAR. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Philadelphia (Penn.), USA (2005)

    Google Scholar 

  8. Borgiotti, G.B., Kaplan, L.J.: Superresolution of uncorrelated interference sources by using adaptive array techniques. IEEE Transactions on Antennas and Propagation 27, 842–845 (1979)

    Article  Google Scholar 

  9. Bridle, A.H., Schwab, F.R.: Bandwidth and Time-Average Smearing. In: G.B. Taylor, C.L. Carilli, R.A. Perley (eds.) Synthesis Imaging in Radio Astronomy II, Astronomical Society of the Pacific Conference Series, vol. 180, chap. 18, pp. 371–382. Astronomical Society of the Pacific (1999)

    Google Scholar 

  10. Briggs, D.S.: High fidelity deconvolution of moderately resolved sources. Ph.D. thesis, New Mexico Inst. of Mining and Technology, Socorro (NM) (1995)

    Google Scholar 

  11. Carrillo, R.E., McEwen, J.D., Wiaux, Y.: Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging. Monthly Notices of the Royal Astronomical Society 426(2), 1223–1234 (2012)

    Article  Google Scholar 

  12. Carrillo, R.E., McEwen, J.D., Wiaux, Y.: PURIFY: a new approach to radio-interferometric imaging. Monthly Notices of the Royal Astronomical Society 439(4), 3591–3604 (2014)

    Article  Google Scholar 

  13. Cornwell, T., Braun, R., Brigss, D.S.: Deconvolution. In: G.B. Taylor, C.L. Carilli, R.A. Perley (eds.) Synthesis Imaging in Radio Astronomy II, Astronomical Society of the Pacific Conference Series, vol. 180, pp. 151–170. Astronomical Society of the Pacific (1999)

    Google Scholar 

  14. Cornwell, T.J.: Multiscale CLEAN deconvolution of radio synthesis images. IEEE Journal of Selected Topics in Signal Processing 2(5), 793–801 (2008)

    Article  Google Scholar 

  15. Cornwell, T.J., Wilkinson, P.N.: A new method for making maps with unstable radio interferometers. Monthly Notices of the Royal Astronomical Society 196, 1067–1086 (1981)

    Article  Google Scholar 

  16. Cotton, W.D., et al.: Beyond the isoplanatic patch in the VLA Low-frequency Sky Survey. In: Proceedings of the SPIE, vol. 5489, pp. 180–189. Glasgow (2004)

    Google Scholar 

  17. Dewdney, P.E., Braun, R.: SKA1-low configuration coordinates - complete set. Tech. Rep. SKA-TEL-SKO-0000422, SKA Office, Manchester (UK) (2016)

    Google Scholar 

  18. Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W.: The square kilometre array. Proceedings of the IEEE 97(8), 1482–1496 (2009)

    Article  Google Scholar 

  19. Duijndam, A.J.W., Schonewille, M.A.: Nonuniform fast Fourier transform. Geophysics 64(2), 539–551 (1999)

    Article  Google Scholar 

  20. Foucart, S., Koslicki, D.: Sparse recovery by means of nonnegative least squares. IEEE Signal Processing Letters 21(4), 498–502 (2014)

    Article  Google Scholar 

  21. Frieden, B.: Restoring with maximum likelihood and maximum entropy. Journal of the Optical Society of America 62, 511–518 (1972)

    Article  Google Scholar 

  22. Fuhrmann, D.R.: Estimation of sensor gain and phase. IEEE Transactions on Signal Processing 42(1), 77–87 (1994)

    Article  Google Scholar 

  23. Garsden, H., et al.: LOFAR sparse image reconstruction. Astronomy & Astrophysics 575(A90), 1–18 (2015)

    Google Scholar 

  24. van Haarlem, M.P., et al.: LOFAR: The low frequency array. Astronomy & Astrophysics 556(A2), 1–53 (2013)

    Google Scholar 

  25. Hamaker, J.P.: Understanding radio polarimetry - iv. the full-coherency analogue of scalar self-calibration: Self-alignment, dynamic range and polarimetric fidelity. Astronomy & Astrophysics Supplement 143(3), 515–534 (2000)

    Article  Google Scholar 

  26. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. John Wiley and Sons (1996)

    Google Scholar 

  27. Hogbom, J.A.: Aperture synthesis with non-regular distribution of interferometer baselines. Astronomy and Astrophysics Suppl. 15, 417–426 (1974)

    Google Scholar 

  28. Intema, H.T., et al.: Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme. I. Method description and first results. Astronomy & Astrophysics 501(3), 1185–1205 (2009)

    Google Scholar 

  29. Jongerius, R.: Exascale computer system design: The square kilometre array. Ph.D. thesis, Eindhoven University of Technology (2016). ISBN 978-90-386-4136-2

    Google Scholar 

  30. Jongerius, R., Wijnholds, S., Nijboer, R., Corporaal, H.: An end-to-end computing model for the square kilometre array. IEEE Computer 47(9), 48–54 (2014)

    Article  Google Scholar 

  31. Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A.G., Koopmans, L.V.E., Noordam, J.: Radio interferometric calibration using the sage algorithm. Monthly Notices of the Royal Astronomical Society 414(2), 1656 (2011)

    Article  Google Scholar 

  32. Lawley, D.N., Maxwell, A.E.: Factor Analysis as a Statistical Method. Butterworth & Co, London (1971)

    MATH  Google Scholar 

  33. Leshem, A., van der Veen, A.J.: Radio-astronomical imaging in the presence of strong radio interference. IEEE Transactions on Information Theory 46(5), 1730–1747 (2000)

    Article  Google Scholar 

  34. Leshem, A., van der Veen A. J., Boonstra, A.J.: Multichannel interference mitigation technique in radio astronomy. Astrophysical Journal Supplements 131(1), 355–374 (2000)

    Article  Google Scholar 

  35. Levanda, R., Leshem, A.: Radio astronomical image formation using sparse reconstruction techniques. In: IEEE 25th convention of Elec. Electron. Eng. in Israel (IEEEI 2008), pp. 716–720 (2008)

    Google Scholar 

  36. Levanda, R., Leshem, A.: Synthetic aperture radio telescopes. IEEE Signal Processing Magazine 27(1), 14–29 (2010)

    Article  Google Scholar 

  37. Li, F., Cornwell, T.J., de Hoog, F.: The application of compressive sampling to radio astronomy; I deconvolution. Astronomy and Astrophysics 528(A31), 1–10 (2011)

    Google Scholar 

  38. Lonsdale, C., et al.: The Murchison Widefield Array: Design overview. Proceedings of the IEEE 97(8), 1497–1506 (2009)

    Article  Google Scholar 

  39. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  40. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, New York (1979)

    MATH  Google Scholar 

  41. Marsh, K.A., Richardson, J.M.: The objective function implicit in the CLEAN algorithm. Astronomy and Astrophysics 182(1), 174–178 (1987)

    Google Scholar 

  42. Mitchell, D.A., et al.: Real-time calibration of the Murchison Widefield Array. IEEE Journal of Selected Topics in Signal Processing 2(5), 707–717 (2008)

    Article  Google Scholar 

  43. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice Hall (2000). ISBN 0201361868

    Google Scholar 

  44. Mouri Sardarabadi, A.: Covariance matching techniques for radio astronomy calibration and imaging. Ph.D. thesis, TU Delft, Dept. EEMCS (2016)

    Google Scholar 

  45. Mouri Sardarabadi, A., Leshem, A., van der Veen, A.J.: Radio astronomical image formation using constrained least squares and Krylov subspaces. Astronomy & Astrophysics 588, A95 (2016)

    Article  Google Scholar 

  46. Noordam, J.E.: Generalized self-calibration for LOFAR. In: XXVIIth General Assembly of the International Union of Radio Science (URSI). Maastricht (The Netherlands) (2002)

    Google Scholar 

  47. Ottersten, B., Stoica, P., Roy, R.: Covariance matching estimation techniques for array signal processing applications. Digital Signal Processing, A Review Journal 8, 185–210 (1998)

    Article  Google Scholar 

  48. Pearson, T.J., Readhead, A.C.S.: Image formation by self-calibration in radio astronomy. Annual Review of Astronomy and Astrophysics 22, 97–130 (1984)

    Article  Google Scholar 

  49. Perley, R.A., Schwab, F.R., Bridle, A.H.: Synthesis Imaging in Radio Astronomy, Astronomical Society of the Pacific Conference Series, vol. 6. BookCrafters Inc. (1994)

    Google Scholar 

  50. Salvini, S., Wijnholds, S.J.: Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications. Astronomy & Astrophysics 571(A97), 1–14 (2014)

    Google Scholar 

  51. Schwardt, L.C.: Compressed sensing imaging with the KAT-7 array. In: International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 690–693 (2012)

    Google Scholar 

  52. Thompson, A.R., Moran, J.M., Swenson, G.W.: Interferometry and Synthesis in Radio Astronomy, 2nd edn. Wiley, New York (2001)

    Book  Google Scholar 

  53. Tingay, S.J., et al.: The Murchison widefield array: The square kilometre array precursor at low radio frequencies. Publications of the Astronomical Society of Australia 30(7) (2013)

    Google Scholar 

  54. van der Tol, S.: Bayesian estimation for ionospheric calibration in radio astronomy. Ph.D. thesis, TU Delft, Dept. EEMCS (2009)

    Google Scholar 

  55. van der Tol, S., Jeffs, B.D., van der Veen, A.J.: Self-calibration for the LOFAR radio astronomical array. IEEE Transactions on Signal Processing 55(9), 4497–4510 (2007)

    Article  MathSciNet  Google Scholar 

  56. Turner, W.: SKA phase 1 system requirements specification. Tech. Rep. SKA-TEL-SKO-0000008, SKA Office, Manchester (UK) (2016)

    Google Scholar 

  57. van der Veen, A.J., Leshem, A., Boonstra, A.J.: Array signal processing for radio astronomy. Experimental Astronomy 17(1–3), 231–249 (2004)

    Article  Google Scholar 

  58. de Vos, M., Gunst, A., Nijboer, R.: The LOFAR telescope: System architecture and signal processing. Proceedings of the IEEE 97(8), 1431–1437 (2009)

    Article  Google Scholar 

  59. Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M.M., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. Monthly Notices of the Royal Astronomical Society 395, 1733–1742 (2009)

    Article  Google Scholar 

  60. Wijnholds, S.J.: Fish-eye observing with phased array radio telescopes. Ph.D. thesis, TU Delft, Dept. EEMCS (2010). ISBN 978-90-9025180-6

    Google Scholar 

  61. Wijnholds, S.J., Boosntra, A.J.: A multisource calibration method for phased array telescopes. In: Fourth IEEE Workshop on Sensor Array and Multi-channel Processing (SAM). Waltham (Mass.), USA (2006)

    Google Scholar 

  62. Wijnholds, S.J., van der Tol, S., Nijboer, R., van der Veen, A.J.: Calibration challenges for the next generation of radio telescopes. IEEE Signal Processing Magazine 27(1), 32–42 (2010)

    Article  Google Scholar 

  63. Wijnholds, S.J., van der Veen, A.J.: Fundamental imaging limits of radio telescope arrays. IEEE Journal of Selected Topics in Signal Processing 2(5), 613–623 (2008)

    Article  Google Scholar 

  64. Wijnholds, S.J., van der Veen, A.J.: Multisource self-calibration for sensor arrays. IEEE Transactions on Signal Processing 57(9), 3512–3522 (2009)

    Article  MathSciNet  Google Scholar 

  65. Wise, M.W., Rafferty, D.A., McKean, J.P.: Feedback at the working surface: A joint X-ray and low-frequency radio spectral study of the Cocoon Shock in Cygnus A. In: 13th Meeting of the American Astronomical Society’s High Energy Astrophysics Division (HEAD), pp. 88–89 (2013)

    Google Scholar 

  66. Yatawatta, S.: Distributed radio interferometric calibration. Monthly Notices of the Royal Astronomical Society 449(4), 4506 (2015)

    Article  Google Scholar 

  67. Zatman, M.: How narrow is narrowband. IEE Proc. Radar, Sonar and Navig. 145(2), 85–91 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alle-Jan van der Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Veen, AJ., Wijnholds, S.J., Sardarabadi, A.M. (2019). Signal Processing for Radio Astronomy. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics