Signal Processing for Wireless Transceivers

  • Markku RenforsEmail author
  • Markku Juntti
  • Mikko Valkama


The data rates as well as quality of service (QoS) requirements for rich user experience in wireless communication services are continuously growing. While consuming a major portion of the energy needed by wireless devices, the wireless transceivers have a key role in guaranteeing the needed data rates with high bandwidth efficiency. The cost of wireless devices also heavily depends on the transmitter and receiver technologies. In this chapter, we concentrate on the problem of transmitting information sequences efficiently through a wireless channel and performing reception such that it can be implemented with state of the art signal processing tools. The operations of the wireless devices can be divided to RF and baseband (BB) processing. Our emphasis is to cover the BB part, including the coding, modulation, and waveform generation functions, which are mostly using the tools and techniques from digital signal processing. But we also look at the overall transceiver from the RF system point of view, covering issues like frequency translations and channelization filtering, as well as emerging techniques for mitigating the inevitable imperfections of the analog RF circuitry through advanced digital signal processing methods.


  1. 1.
    IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise I, May (2001)Google Scholar
  2. 2.
    IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle: From theory to practise II, Sep (2001)Google Scholar
  3. 3.
    Abdelaziz, M., Anttila, L., Kiayani, A., Valkama, M.: Decorrelation-based concurrent digital predistortion with a single feedback path. IEEE Transactions on Microwave Theory and Techniques PP(99), 1–14 (2017). CrossRefGoogle Scholar
  4. 4.
    Abdelaziz, M., Anttila, L., Tarver, C., Li, K., Cavallaro, J.R., Valkama, M.: Low-complexity subband digital predistortion for spurious emission suppression in noncontiguous spectrum access. IEEE Transactions on Microwave Theory and Techniques 64(11), 3501–3517 (2016). CrossRefGoogle Scholar
  5. 5.
    Abdelaziz, M., Fu, Z., Anttila, L., Wyglinski, A.M., Valkama, M.: Digital predistortion for mitigating spurious emissions in spectrally agile radios. IEEE Communications Magazine 54(3), 60–69 (2016). CrossRefGoogle Scholar
  6. 6.
    Abdoli, J., Jia, M., Ma, J.: Filtered OFDM: A new waveform for future wireless systems. In: IEEE Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 66–70 (2015).
  7. 7.
    Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, Elsevier 50, 2127–2159 (2006)zbMATHCrossRefGoogle Scholar
  8. 8.
    Allen, M., Marttila, J., Valkama, M.: Digital post-processing for reducing A/D converter nonlinear distortion in wideband radio receivers. In: Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pp. 1111 –1114 (2009)Google Scholar
  9. 9.
    Anderson, J., Mohan, S.: Source and channel coding: An algorithmic approach. IEEE Trans. Commun. 32(2), 169–176 (1984)CrossRefGoogle Scholar
  10. 10.
    Anttila, L., Händel, P., Valkama, M.: Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters. IEEE Transactions on Microwave Theory and Techniques 58(4), 730–739 (2010)CrossRefGoogle Scholar
  11. 11.
    Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57(4), 2099 –2113 (2008)CrossRefGoogle Scholar
  12. 12.
    Anttila, L., Zou, Y., Valkama, M.: Digital compensation and calibration of I/Q gain and phase imbalances, chap. 16. Cambridge University Press, Cambridge, UK (2011)Google Scholar
  13. 13.
    Arkesteijn, V., Klumperink, E., Nauta, B.: Jitter requirements of the sampling clock in software radio receivers. IEEE Trans. Circuits Syst. II 53(2), 90 – 94 (2006)CrossRefGoogle Scholar
  14. 14.
    Aschbacher, E.: Digital predistortion of microwave power amplifiers. Ph.D. thesis, Technishe Universitat Wien (2004)Google Scholar
  15. 15.
    Auer, G.: Bandwidth efficient 3D pilot design for MIMO-OFDM. In: Proc. European Wireless Conf. Lucca, Italy (2010)Google Scholar
  16. 16.
    Auras, D., Leupers, R., Ascheid, G.: Efficient VLSI architecture for matrix inversion in soft-input soft-output MMSE MIMO detectors. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1018–1021. Melbourne, Australia (2014)Google Scholar
  17. 17.
    Auras, D., Leupers, R., Ascheid, G.: A novel reduced-complexity soft-input soft-output MMSE MIMO detector: Algorithm and efficient VLSI architecture. In: Proc. IEEE Int. Conf. Commun., pp. 4722–4728. Sydney, Australia (2014)Google Scholar
  18. 18.
    Bala, E., Li, J., Yang, R.: Shaping spectral leakage: A novel low-complexity transceiver architecture for cognitive radio. IEEE Vehicular Technology Magazine 8(3), 38–46 (2013). CrossRefGoogle Scholar
  19. 19.
    Baltar, L., Schaich, F., Renfors, M., Nossek, J.: Computational complexity analysis of advanced physical layers based on multicarrier modulation. In: Proc. Future Network & Mobile Summit, pp. 1–8. Warsaw, Poland (2011)Google Scholar
  20. 20.
    Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A.: Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing Mag. 31(6), 80–93 (2014). CrossRefGoogle Scholar
  21. 21.
    Bassam, S., Ghannouchi, F., Helaoui, M.: 2-D Digital Predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques 59, 2547–2553 (Oct. 2011)CrossRefGoogle Scholar
  22. 22.
    Benedetto, S., Biglieri, E.: Principles of Digital Transmission; With Wireless Applications. Kluwer Academic Publishers, New York (1999)zbMATHGoogle Scholar
  23. 23.
    Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–955 (2002)CrossRefGoogle Scholar
  24. 24.
    Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)CrossRefGoogle Scholar
  25. 25.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and decoding: Turbo codes. In: Proc. IEEE Int. Conf. Commun., vol. 2, pp. 1064–1070. Geneva, Switzerland (1993)Google Scholar
  26. 26.
    Bingham, J.: Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine 28(5), 5–14 (1990)CrossRefGoogle Scholar
  27. 27.
    Boelcskei, H., Gesbert, D., Papadias, C.B., van der Veen, A.J.: Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge University Press, Cambridge, UK (2006)zbMATHCrossRefGoogle Scholar
  28. 28.
    Borgerding, M.: Turning overlap-save into a multiband mixing, downsampling filter bank. IEEE Signal Processing Mag. pp. 158–162 (2006)CrossRefGoogle Scholar
  29. 29.
    Braithwaite, R.: Closed-loop digital predistortion (DPD) using an observation path with limited bandwidth. IEEE Transactions on Microwave Theory and Techniques 63, no. 2, 726–736 (Feb. 2015)CrossRefGoogle Scholar
  30. 30.
    Brandes, S., Cosovic, I., Schnell, M.: Sidelobe suppression in OFDM systems by insertion of cancellation carriers. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 152–156. Los Angeles, CA, USA (2005)Google Scholar
  31. 31.
    Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bölcskei, H.: VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE J. Solid-State Circuits 40(7), 1566–1577 (2005)CrossRefGoogle Scholar
  32. 32.
    Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., Fichtner, W.: Algorithm and VLSI architecture for linear MMSE detection in MIMO–OFDM systems. In: Proc. IEEE Int. Symp. Circuits and Systems. Kos, Greece (2006)Google Scholar
  33. 33.
    Cabarkapa, M., Neskovic, N., Budimir, D.: A Generalized 2-D linearity enhancement architecture for concurrent dual-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques 61(12), 4579–4590 (2013). CrossRefGoogle Scholar
  34. 34.
    Cavers, J.K.: An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans. Veh. Technol. 40(4), 686–693 (1991)CrossRefGoogle Scholar
  35. 35.
    Chang, R.: High-speed multichannel data transmission with bandlimited orthogonal signals. Bell Syst. Tech. J. 45, 1775–1796 (1966)CrossRefGoogle Scholar
  36. 36.
    Chen, H.M., Chen, W.C., Chung, C.D.: Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios. IEEE Trans. Wireless Commun. 10(5), 1416 – 1427 (2011)CrossRefGoogle Scholar
  37. 37.
    Chen, L., Chen, W., Zhang, X., Yang, D.: Analysis and simulation for spectrum aggregation in LTE-advanced system. In: Proc. IEEE Veh. Technol. Conf. Fall, pp. 1–6. Anchorage, AK, USA (2009)Google Scholar
  38. 38.
    Cherubini, G., Eleftheriou, E., Olcer, S.: Filtered multitone modulation for VDSL. In: Proc. IEEE Global Telecommun. Conf., pp. 1139–1144 (1999)Google Scholar
  39. 39.
    CISCO: Visual networking index (VNI) mobile white paper [online]. available at (2017)
  40. 40.
    Collings, I., Butler, M., McKay, M.: Low complexity receiver design for MIMO bit-interleaved coded modulation. In: Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, pp. 1993–1997. Sydney, Australia (2004)Google Scholar
  41. 41.
    Cosovic, I., Brandes, S., Schnell, M.: Subcarrier weighting: a method for sidelobe suppression in OFDM systems. IEEE Commun. Lett. 10(6), 444–446 (2006)CrossRefGoogle Scholar
  42. 42.
    Coulson, A., Vaughan, R., Poletti, M.: Frequency-shifting using bandpass sampling. IEEE Trans. Signal Processing 42(6), 1556 –1559 (1994)CrossRefGoogle Scholar
  43. 43.
    Crochiere, R., Rabiner, L.: Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1983)Google Scholar
  44. 44.
    Crols, J., Steyaert, M.: CMOS Wireless Transceiver Design. Kluwer, Dordrecht, The Netherlands (1997)zbMATHGoogle Scholar
  45. 45.
    Dahlman, E., Parkvall, S., Sköld, J.: 4G LTE / LTE-Advanced for Mobile Broadband. Academic Press (2011)Google Scholar
  46. 46.
    Damen, M.O., Gamal, H.E., Caire, G.: On maximum–likelihood detection and the search for the closest lattice point. IEEE Trans. Inform. Theory 49(10), 2389–2402 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: A unifying theory and numerical methods for characterization. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47(5), 655 –674 (2000)CrossRefGoogle Scholar
  48. 48.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Ding, L.: Digital predistortion of power amplifiers for wireless applications. Ph.D. thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology (2004)Google Scholar
  50. 50.
    Dufrêne, K., Boos, Z., Weigel, R.: Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers. IEEE J. Solid-State Circuits 43(11), 2434–2445 (2008)CrossRefGoogle Scholar
  51. 51.
    EMPHATIC: (2015). INFSO-ICT-211887 Project EMPHATIC Deliverables [Online]. Available at Google Scholar
  52. 52.
    Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., Eidson, B.: Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)CrossRefGoogle Scholar
  53. 53.
    Farhang-Boroujeny, B., Kempter, R.: Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun. Mag. 46(4), 80–85 (2008)CrossRefGoogle Scholar
  54. 54.
    Faulkner, M.: The effect of filtering on the performance of OFDM systems. IEEE Trans. Veh. Technol. 49(9), 1877–1884 (2000)CrossRefGoogle Scholar
  55. 55.
    Faulkner, M., Mattsson, T., Yates, W.: Automatic adjustment of quadrature modulators. IEE Electron. Lett. 27(3), 214 –216 (1991)CrossRefGoogle Scholar
  56. 56.
    Fessler, J., Hero, A.: Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Processing 42(10), 2664–2677 (1994)CrossRefGoogle Scholar
  57. 57.
    Fettweis, G., Löhning, M., Petrovic, D., Windisch, M., Zillmann, P., Rave, W.: Dirty RF: A new paradigm. Int. J. Wireless Inform. Networks 14, 138–148 (2007)CrossRefGoogle Scholar
  58. 58.
    Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(5), 463–471 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Frerking, M.E.: Digital Signal Processing in Communication Systems. Chapman & Hall, New York, USA (1994)CrossRefGoogle Scholar
  61. 61.
    Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge, USA (1963)zbMATHGoogle Scholar
  62. 62.
    3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network: Evolved universal terrestrial radio access E-UTRA; physical channels and modulation TS 36.211 (version 8.5.0). Tech. rep. (2008)Google Scholar
  63. 63.
    Gerzaguet, R., Bartzoudis, N., Baltar, L.G., Berg, V., Doré, J.B., Kténas, D., Font-Bach, O., Mestre, X., Payaró, M., Färber, M., Roth, K.: The 5G candidate waveform race: A comparison of complexity and performance. EURASIP Journal on Wireless Communications and Networking 2017(1), 13 (2017). CrossRefGoogle Scholar
  64. 64.
    Gilabert, P.L., Montoro, G.: 3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization. IEEE Transactions on Microwave Theory and Techniques 63(2), 638–648 (2015). CrossRefGoogle Scholar
  65. 65.
    Girotto, M., Tonello, A.M.: Orthogonal design of cyclic block filtered multitone modulation. IEEE Transactions on Communications 64(11), 4667–4679 (2016). CrossRefGoogle Scholar
  66. 66.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, New York, USA (2005)CrossRefGoogle Scholar
  67. 67.
    Guo, Z., Nilsson, P.: Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE J. Select. Areas Commun. 24(3), 491–503 (2006)CrossRefGoogle Scholar
  68. 68.
    Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, MA, USA (1996)Google Scholar
  69. 69.
    Hanzo, L., Liew, T., Yeap, B.: Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels. John Wiley & Sons, Chichester, UK (2002)CrossRefGoogle Scholar
  70. 70.
    Hara, S., Prasad, R.: Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels. IEEE Trans. Veh. Technol. 48(5), 1584–1595 (1999)CrossRefGoogle Scholar
  71. 71.
    fred harris, Venosa, E., Chen, X., Renfors, M.: Cascade linear phase recursive half-band filters implement the most efficient digital down-converter. In: SDR’11 - Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio. Washington DC, USA (2011)Google Scholar
  72. 72.
    harris, f., McGwier, R., Egg, B.: A versatile multichannel filter bank with multiple channel bandwidths. In: Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, pp. 1 –5. Cannes, France (2010)Google Scholar
  73. 73.
    Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA (1996)Google Scholar
  74. 74.
    Hentschel, T.: Sample rate conversion in software configurable radios. Artech House, Norwood, MA, USA (2002)Google Scholar
  75. 75.
    Hirosaki, B.: An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Commun. 29(7), pp. 982 – 989 (1981)CrossRefGoogle Scholar
  76. 76.
    Ho, Y.C., Staszewski, R.B., Muhammad, K., Hung, C.M., Leipold, D., Maggio, K.: Charge-domain signal processing of direct RF sampling mixer with discrete-time filter in Bluetooth and GSM receivers. EURASIP J. Wireless Comm. and Netw. 2006(3), 1–14 (2006)CrossRefGoogle Scholar
  77. 77.
    Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Commun. 51(3), 389–399 (2003)CrossRefGoogle Scholar
  78. 78.
    Hogenauer, E.: An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust., Speech, Signal Processing 29(2), 155 – 162 (1981)CrossRefGoogle Scholar
  79. 79.
    Huang, Y., Ritcey, J.A.: Joint iterative channel estimation and decoding for bit-interleaved coded modulation over correlated fading channels. IEEE Trans. Wireless Commun. 4(5), 2549–2558 (2005)CrossRefGoogle Scholar
  80. 80.
    Ihalainen, T., Ikhlef, A., Louveaux, J., Renfors, M.: Channel equalization for multi-antenna FBMC/OQAM receivers. IEEE Trans. Veh. Technol. 60(5), 2070–2085 (2011)CrossRefGoogle Scholar
  81. 81.
    Jelinek, F., Anderson, J.: Instrumentable tree encoding of information sources. IEEE Trans. Inform. Theory 17(1), 118–119 (1971)zbMATHCrossRefGoogle Scholar
  82. 82.
    Jiang, T., Wu, Y.: An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 54(2), 257–268 (2008)CrossRefGoogle Scholar
  83. 83.
    Juntti, M., Glisic, S.: Advanced CDMA for wireless communications. In: S.G. Glisic, P.A. Leppänen (eds.) Wireless Communications: TDMA Versus CDMA, chap. 4, pp. 447–490. Kluwer (1997)Google Scholar
  84. 84.
    Katz, A.: Linearization: reducing distortion in power amplifiers. IEEE Microwave 2(4), 37 –49 (2001)CrossRefGoogle Scholar
  85. 85.
    Katz, A., Gray, R., Dorval, R.: Truly wideband linearization. IEEE Microwave Magazine 10(7), 20–27 (2009)CrossRefGoogle Scholar
  86. 86.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA (1993)zbMATHGoogle Scholar
  87. 87.
    Keehr, E., Hajimiri, A.: Equalization of third-order intermodulation products in wideband direct conversion receivers. IEEE J. Solid-State Circuits 43(12), 2853 –2867 (2008)CrossRefGoogle Scholar
  88. 88.
    Keehr, E., Hajimiri, A.: Successive regeneration and adaptive cancellation of higher order intermodulation products in RF receivers. IEEE Trans. Microwave Theory Tech. 59(5), 1379 –1396 (2011)CrossRefGoogle Scholar
  89. 89.
    Kenington, P.B.: Linearized transmitters: An enabling technology for software defined radio. IEEE Communications Magazine 40(2), 156–162 (2002)CrossRefGoogle Scholar
  90. 90.
    Ketonen, J., Juntti, M., Cavallaro, J.: Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Trans. Signal Processing 58(6), 3360–3372 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Ketonen, J., Juntti, M., Ylioinas, J.: Decision directed channel estimation for reducing pilot overhead in LTE-A. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 1503–1507. Pacific Grove, USA (2010)Google Scholar
  92. 92.
    Kim, J., Roblin, P., Chaillot, D., Xie, Z.: A generalized architecture for the frequency-selective digital predistortion linearization technique. IEEE Transactions on Microwave Theory and Techniques 61, 596–605 (Jan. 2013)CrossRefGoogle Scholar
  93. 93.
    Kim, W.J., Stapleton, S.P., Kim, J.H., Edelman, C.: Digital predistortion linearizes wireless power amplifiers. IEEE Microwave Magazine 6(3), 54–61 (2005)CrossRefGoogle Scholar
  94. 94.
    Komninakis, C., Wesel, R.D.: Joint iterative channel estimation and decoding in flat correlated Rayleigh fading. IEEE J. Select. Areas Commun. 19(9), 1706 – 1717 (2001)CrossRefGoogle Scholar
  95. 95.
    Le Floch, B., Alard, M., Berrou, C.: Coded orthogonal frequency division multiplex. Proc. IEEE 83(6), 982–996 (1995)CrossRefGoogle Scholar
  96. 96.
    Lélé, C., Javaudin, J.P., Legouable, R., Skrzypczak, A., Siohan, P.: Channel estimation methods for preamble-based OFDM/OQAM modulation. European Trans. Telecommun. 19(7), 741–750 (2008)CrossRefGoogle Scholar
  97. 97.
    Li, J., Bala, E., Yang, R.: Resource block filtered-OFDM for future spectrally agile and power efficient systems. Physical Communication 14, 36–55 (2014). CrossRefGoogle Scholar
  98. 98.
    Li, M., Bougart, B., Lopez, E., Bourdoux, A.: Selective spanning with fast enumeration: A near maximum-likelihood MIMO detector designed for parallel programmable baseband architectures. In: Proc. IEEE Int. Conf. Commun., pp. 737 – 741. Beijing, China (2008)Google Scholar
  99. 99.
    Lin, H., Siohan, P.: Multi-carrier modulation analysis and WCP-COQAM proposal. EURASIP Journal on Advances in Signal Processing 2014(1), 1–19 (2014). CrossRefGoogle Scholar
  100. 100.
    Liu, J., Zhou, J., Chen, W., Zhou, B., Ghannouchi, F.: Low-complexity 2D behavioural model for concurrent dual-band power amplifiers. Electronics Letters 48(11), 620–621 (2012). CrossRefGoogle Scholar
  101. 101.
    Liu, T., Boumaiza, S., Ghannouchi, F.: Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microwave Theory and Techniques 54(4), 1340–1349 (2006)CrossRefGoogle Scholar
  102. 102.
    Liu, Y., Yan, J., Asbeck, P.: Concurrent dual-band digital predistortion with a single feedback loop. IEEE Transactions on Microwave Theory and Techniques 63, no. 5, 1556–1568 (May 2015)CrossRefGoogle Scholar
  103. 103.
    Loulou, A., Renfors, M.: Enhanced OFDM for fragmented spectrum use in 5G systems. Trans. Emerging Tel. Tech. 26(1), 31–45 (2015). CrossRefGoogle Scholar
  104. 104.
    Ma, Y., Yamao, Y.: Spectra-folding feedback architecture for concurrent dual-band power amplifier predistortion. IEEE Transactions on Microwave Theory and Techniques 63(10), 3164–3174 (2015). CrossRefGoogle Scholar
  105. 105.
    Mak, P.I., U, S.P., Martins, R.: Transceiver architecture selection: Review, state-of-the-art survey and case study. IEEE Circuits Syst. Mag. 7(2), 6 –25 (2007)CrossRefGoogle Scholar
  106. 106.
    Maliatsos, K., Adamis, A., Kanatas, A.G.: Interference versus filtering distortion trade-offs in OFDM-based cognitive radios. Transactions on Emerging Telecommunications Technologies 24(7-8), 692–708 (2013). CrossRefGoogle Scholar
  107. 107.
    Martin, K.: Complex signal processing is not complex. IEEE Trans. Circuits Syst. I 51(9), 1823 – 1836 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York, USA (1997)zbMATHGoogle Scholar
  109. 109.
    Meyr, H., Moeneclaey, M., Fechtel, S.A.: Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing. John Wiley and Sons, New York, USA (1998)Google Scholar
  110. 110.
    Miao, H., Juntti, M.: Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation. IEEE Trans. Veh. Technol. 54(6), 2003–2016 (2005)CrossRefGoogle Scholar
  111. 111.
    Michailow, N., Matthé, M., Gaspar, I.S., Caldevilla, A.N., Mendes, L.L., Festag, A., Fettweis, G.: Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications 62(9), 3045–3061 (2014). CrossRefGoogle Scholar
  112. 112.
    Mirabbasi, S., Martin, K.: Classical and modern receiver architectures. IEEE Commun. Mag. 38(11), 132 – 139 (2000)CrossRefGoogle Scholar
  113. 113.
    Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26 –38 (1995)CrossRefGoogle Scholar
  114. 114.
    Morgan, D., et al.: A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Processing 54(10), 3852–3860 (2006)zbMATHCrossRefGoogle Scholar
  115. 115.
    Muhammad, K., Staszewski, R., Leipold, D.: Digital RF processing: Toward low-cost reconfigurable radios. Communications Magazine, IEEE 43(8), 105 – 113 (2005)CrossRefGoogle Scholar
  116. 116.
    Muschallik, C.: Improving an OFDM reception using an adaptive Nyquist windowing. In: 1996. Digest of Technical Papers., International Conference on Consumer Electronics, pp. 6– (1996).
  117. 117.
    Myllylä, M.: Detection algorithms and architectures for wireless spatial multiplexing in MIMO–OFDM systems. Ph.D. thesis, Acta Univ. Oul., C Technica 380, University of Oulu (2011)Google Scholar
  118. 118.
    Myllylä, M., Cavallaro, J.R., Juntti, M.: Architecture design and implementation of the metric first list sphere detector algorithm. IEEE Trans. VLSI Syst. 19(5), 895–899 (2011)CrossRefGoogle Scholar
  119. 119.
    Myllylä, M., Juntti, M., Cavallaro, J.: Architecture design and implementation of the increasing radius - List sphere detector algorithm. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 553–556. Taipei, Taiwan (2009)Google Scholar
  120. 120.
    Myung, H.G., Junsung, L., Goodman, D.J.: Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1(7), 30–38 (2006)CrossRefGoogle Scholar
  121. 121.
    Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Arthec House, Boston (2000)Google Scholar
  122. 122.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA (1989)zbMATHGoogle Scholar
  123. 123.
    Parsons, J.D.: The Mobile Radio Propagation Channel, second edn. John Wiley & Sons (2001)Google Scholar
  124. 124.
    Petrovic, D., Rave, W., Fettweis, G.: Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. IEEE Transactions on Communications 55(8), 1607 –1616 (2007)CrossRefGoogle Scholar
  125. 125.
    PHYDYAS: (2011). INFSO-ICT-211887 Project PHYDYAS Deliverables, [Online]. Available at Google Scholar
  126. 126.
    Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2000)zbMATHGoogle Scholar
  127. 127.
    Pun, M.O., Morelli, M., Kuo, C.C.: Multi-Carrier Techniques for Broadband Wireless Communications. Imperial College Press (2007)Google Scholar
  128. 128.
    Qian, H., Yao, S., Huang, H., Yang, X., Feng, W.: Low complexity coefficient estimation for concurrent dual-band digital predistortion. IEEE Transactions on Microwave Theory and Techniques 63(10), 3153–3163 (2015). CrossRefGoogle Scholar
  129. 129.
    Qualcomm: 5G Waveform & Multiple Access Techniques (2015). Online:, last accessed 3 June 2016
  130. 130.
    Rabiei, P., Namgoong, W., Al-Dhahir, N.: A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Trans. Signal Processing 58(11), 5945 –5950 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Renfors, M., Bader, F., Baltar, L., Ruyet, D.L., Roviras, D., Mege, P., Haardt, M., Stitz, T.H.: On the use of filter bank based multicarrier modulation for professional mobile radio. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2013).
  132. 132.
    Renfors, M., et al.: Flexible and spectrally localized waveform processing for next generation wireless communications (2015). INFSO-ICT-211887 Project PHYDYAS, White Paper, [Online]. Available at
  133. 133.
    Renfors, M., Ihalainen, T., Stitz, T.: A block-Alamouti scheme for filter bank based multicarrier transmission. In: European Wireless Conference, pp. 1031 –1037 (2010).
  134. 134.
    Renfors, M., Saramäki, T.: Recursive Nth-band digital filters- Part II: Design of multistage decimators and interpolators. IEEE Trans. Circuits Syst. 34(1), 40 – 51 (1987)CrossRefGoogle Scholar
  135. 135.
    Renfors, M., Yli-Kaakinen, J.: Flexible fast-convolution implementation of single-carrier waveform processing. In: IEEE Int. Conf on Communications Workshops, ICCW 2015, pp. 1243–1248. London, UK (2015).
  136. 136.
    Renfors, M., Yli-Kaakinen, J., Harris, F.: Analysis and design of efficient and flexible fast-convolution based multirate filter banks. IEEE Trans. Signal Processing 62(15), 3768–3783 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Ringset, V., Rustad, H., Schaich, F., Vandermot, J., Najar, M.: Performance of a filterbank multicarrier (FBMC) physical layer in the WiMAX context. In: Proc. Future Network & Mobile Summit. Florence, Italy (2010)Google Scholar
  138. 138.
    Roblin, P., Myoung, S.K., Chaillot, D., Kim, Y.G., Fathimulla, A., Strahler, J., Bibyk, S.: Frequency-selective predistortion linearization of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 56, 65–76 (Jan. 2008)CrossRefGoogle Scholar
  139. 139.
    Roblin, P., Quindroit, C., Naraharisetti, N., Gheitanchi, S., Fitton, M.: Concurrent linearization. IEEE Microwave Magazine pp. 75–91 (Nov. 2013)Google Scholar
  140. 140.
    Rodriguez, S., Rusu, A., Zheng, L.R., Ismail, M.: CMOS RF mixer with digitally enhanced IIP2. Electronics Letters 44, 121–122 (2008)CrossRefGoogle Scholar
  141. 141.
    Rutten, R., Breems, L., van Veldhoven, R.: Digital jitter-cancellation for narrowband signals. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 1444 –1447 (2008)Google Scholar
  142. 142.
    Sahin, A., Arslan, H.: Edge windowing for OFDM based systems. IEEE Commun. Lett. 15(11), 1208–1211 (2011)CrossRefGoogle Scholar
  143. 143.
    Saltzberg, B.: Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15(6), 805–811 (1967)CrossRefGoogle Scholar
  144. 144.
    Saramäki, T., Ritoniemi, T.: A modified comb filter structure for decimation. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 2353–2356. Hong-Kong (1997)Google Scholar
  145. 145.
    Sari, H., Karim, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33(2), 100–109 (1995)CrossRefGoogle Scholar
  146. 146.
    Schaich, F., Wild, T., Chen, Y.: Waveform contenders for 5G – Suitability for short packet and low latency transmissions. In: IEEE Vehicular Technology Conference (VTC Spring 2014), pp. 1–5 (2014)Google Scholar
  147. 147.
    Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley, Reading, MA, USA (1991)zbMATHGoogle Scholar
  148. 148.
    Schlegel, C., Pérez, L.: Trellis and Turbo Coding. Wiley IEEE Press Publication, Piscataway, USA (2004)CrossRefGoogle Scholar
  149. 149.
    Shaat, M., Bader, F.: Computationally efficient power allocation algorithm in multicarrier-based cognitive radio networks: OFDM and FBMC systems. EURASIP J. Advances Signal Processing 2010, 1–13 (2010)CrossRefGoogle Scholar
  150. 150.
    Shafi, M., Molisch, A.F., Smith, P.J., Haustein, T., Zhu, P., Silva, P.D., Tufvesson, F., Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges, deployment and practice. IEEE Journal on Selected Areas in Communications PP(99), 1–1 (2017). CrossRefGoogle Scholar
  151. 151.
    Shahed, A., Valkama, M., Renfors, M.: Adaptive compensation of nonlinear distortion in multicarrier direct-conversion receivers. In: IEEE Radio Wireless Conf., RAWCON’04, pp. 35–38. Atlanta, GA (2004)Google Scholar
  152. 152.
    Shao, K., Alhava, J., Yli-Kaakinen, J., Renfors, M.: Fast-convolution implementation of filter bank multicarrier waveform processing. In: IEEE Int. Symp. on Circuits and Systems (ISCAS 2015), pp. 978–981. Lisbon, Portugal (2015).
  153. 153.
    Siohan, P., Siclet, C., Lacaille, N.: Analysis and design of OFDM-OQAM systems based on filterbank theory. IEEE Trans. Signal Processing 50(5), 1170–1183 (2002)CrossRefGoogle Scholar
  154. 154.
    Studer, C., Burg, A., Bolcskei, H.: Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J. Select. Areas Commun. 26(2), 290–300 (2008)CrossRefGoogle Scholar
  155. 155.
    Studer, C., Fateh, S., Seethaler, D.: ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE J. Solid-State Circuits 46(7), 1754–1765 (2011)CrossRefGoogle Scholar
  156. 156.
    Suikkanen, E.: Detection algorithms and ASIC designs for MIMO-OFDM downlink receivers. Ph.D. thesis, Acta Univ. Oul., C Technica 606, University of Oulu, Oulu, Finland (2017)Google Scholar
  157. 157.
    Suikkanen, E., Juntti, M.: ASIC implementation and performance comparison of adaptive detection for MIMO–OFDM system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., pp. 1632–1636. Pacific Grove, USA (2015)Google Scholar
  158. 158.
    Syrjälä, V., Valkama, M.: Analysis and mitigation of phase noise and sampling jitter in OFDM radio receivers. Int. J. Microwave and Wireless Technologies 2(4), 193–202 (2010)CrossRefGoogle Scholar
  159. 159.
    Syrjälä, V., Valkama, M.: Sampling jitter cancellation in direct-sampling radio. In: Proc. IEEE Wireless Commun. and Networking Conf., pp. 1 –6 (2010)Google Scholar
  160. 160.
    Tandur, D., Moonen, M.: Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems. IEEE Trans. Signal Processing 55(11), 5246 –5252 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Tarighat, A., Bagheri, R., Sayed, A.: Compensation schemes and performance analysis of IQ imbalances in OFDM receivers. IEEE Trans. Signal Processing 53(8), 3257 – 3268 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Tarver, C., Sun, Y., Amiri, K., Brogioli, M., Cavallaro, J.R.: Application-specific accelerators for communications. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)Google Scholar
  163. 163.
    Tomba, L.: On the effect of Wiener phase noise in OFDM systems. IEEE Trans. Commun. 46(5), 580 –583 (1998)CrossRefGoogle Scholar
  164. 164.
    Toskala, A., Holma, H.: LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. John Wiley and Sons, New York, USA (2009)Google Scholar
  165. 165.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK (2005)zbMATHCrossRefGoogle Scholar
  166. 166.
    Tsui, J.: Digital Techniques for Wideband Receivers. Artech House, Norwood, MA, USA (1995)Google Scholar
  167. 167.
    Tüchler, M., Singer, A.C., Koetter, R.: Minimum mean squared error equalisation using a priori information. IEEE Trans. Signal Processing 50(3), 673–683 (2002)CrossRefGoogle Scholar
  168. 168.
    Väänänen, O., Vankka, J., Halonen, K.: Simple algorithm for peak windowing and its application in GSM, EDGE and WCDMA systems. IEE Proc. – Commun. 152(3), 357–362 (2005)CrossRefGoogle Scholar
  169. 169.
    Valkama, M.: RF impairment compensation for future radio systems. In: G. Hueber and R.B. Staszewski, Eds., Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley/IEEE Press, U.K. (2010)Google Scholar
  170. 170.
    Valkama, M., Pirskanen, J., Renfors, M.: Signal processing challenges for applying software radio principles in future wireless terminals: An overview. Int. Journal of Communication Systems, Wiley 15, 741–769 (2002)zbMATHGoogle Scholar
  171. 171.
    Valkama, M., Renfors, M., Koivunen, V.: Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Trans. Signal Processing 49(10), 2335 –2344 (2001)CrossRefGoogle Scholar
  172. 172.
    Valkama, M., Shahed hagh ghadam, A., Anttila, L., Renfors, M.: Advanced digital signal processing techniques for compensation of nonlinear distortion in wideband multicarrier radio receivers. IEEE Trans. Microwave Theory and Techniques 54(6), 2356–2366 (2006)CrossRefGoogle Scholar
  173. 173.
    Valkama, M., Springer, A., Hueber, G.: Digital signal processing for reducing the effects of RF imperfections in radio devices – An overview. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 813 –816 (2010)Google Scholar
  174. 174.
    Vallet, R., Taieb, K.H.: Fraction spaced multi-carrier modulation. Wireless Pers. Commun., Kluwer 2, 97–103 (1995)Google Scholar
  175. 175.
    Vangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., Vlot, M., Mignone, V., Morello, A.: Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Commun. Mag. 47(10), 146–153 (2009)CrossRefGoogle Scholar
  176. 176.
    Vaughan, R., Scott, N., White, D.: The theory of bandpass sampling. IEEE Trans. Signal Processing 39(9), 1973 –1984 (1991)CrossRefGoogle Scholar
  177. 177.
    Verdú, S.: Multiuser Detection. Cambridge University Press, Cambridge, UK (1998)zbMATHGoogle Scholar
  178. 178.
    Viholainen, A., Ihalainen, T., Rinne, M., Renfors, M.: Localized mode DFT-S-OFDMA implementation using frequency and time domain interpolation. EURASIP Journal on Advances in Signal Processing 2009, 1–9 (2009). CrossRefGoogle Scholar
  179. 179.
    Viholainen, A., Ihalainen, T., Stitz, T.H., Renfors, M., Bellanger, M.: Prototype filter design for filter bank based multicarrier transmission. In: Proc. European Sign. Proc. Conf. Glasgow, Scotland (2009)Google Scholar
  180. 180.
    Weinsten, S.B., Ebert, P.M.: Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Trans. Commun. Technol. 19(5), 628–634 (1971)CrossRefGoogle Scholar
  181. 181.
    Weiss, T.A., Hillenbrand, J., Krohn, A., Jondral, F.K.: Mutual interference in OFDM-based spectrum pooling systems. In: Proc. IEEE Veh. Technol. Conf. Spring, pp. 1872–1877. Dallas, TX, USA (2004)Google Scholar
  182. 182.
    Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In: International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 295–300. Pisa, Italy (1998)Google Scholar
  183. 183.
    Wong, K., Tsui, C., Cheng, R.K., Mow, W.: A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 273–276. Scottsdale, AZ (2002)Google Scholar
  184. 184.
    Wu, M., Yin, B., Vosoughi, A., Studer, C., Cavallaro, J.R., Dick, C.: Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink. In: Proc. IEEE Int. Symp. Circuits and Systems, pp. 2155–2158. Beijing, China (2013)Google Scholar
  185. 185.
    Wu, S., Bar-Ness, Y.: OFDM systems in the presence of phase noise: Consequences and solutions. IEEE Trans. Commun. 52(11), 1988 – 1996 (2004)CrossRefGoogle Scholar
  186. 186.
    Xie, Y., Georghiades, C.N., Li, Q.: A novel low complexity detector for MIMO system. In: Proc. Annual Asilomar Conf. Signals, Syst., Comp., vol. 1, pp. 208 – 212 (2004)Google Scholar
  187. 187.
    Yli-Kaakinen, J., Levanen, T., Valkonen, S., Pajukoski, K., Pirskanen, J., Renfors, M., Valkama, M.: Efficient fast-convolution based waveform processing for 5G physical layer. IEEE Journal on Selected Areas in Communications 35, 1–18 (2017)CrossRefGoogle Scholar
  188. 188.
    Ylioinas, J., Juntti, M.: Iterative joint detection, decoding, and channel estimation in turbo coded MIMO-OFDM. IEEE Trans. Veh. Technol. 58(4), 1784–1796 (2009). CrossRefGoogle Scholar
  189. 189.
    Ylioinas, J., Raghavendra, M.R., Juntti, M.: Avoiding matrix inversion in DD SAGE channel estimation in MIMO-OFDM with M-QAM. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. Anchorage, USA (2009)Google Scholar
  190. 190.
    Younes, M., Kwan, A., Rawat, M., Ghannouchi, F.M.: Linearization of concurrent tri-band transmitters using 3-D phase-aligned pruned volterra model. IEEE Transactions on Microwave Theory and Techniques 61(12), 4569–4578 (2013). CrossRefGoogle Scholar
  191. 191.
    Yu, C., Allegue-Martinez, M., Guo, Y., Zhu, A.: Output-controllable partial inverse digital predistortion for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 62(11), 2499–2510 (2014). CrossRefGoogle Scholar
  192. 192.
    Yu, C., Guan, L., Zhu, E., Zhu, A.: Band-limited volterra series-based digital predistortion for wideband RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques 60(12), 4198–4208 (2012). CrossRefGoogle Scholar
  193. 193.
    Yu, C., Xia, J., Zhu, X., Zhu, A.: Single-model single-feedback digital predistortion for concurrent multi-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques 63(7), 2211–2224 (2015). CrossRefGoogle Scholar
  194. 194.
    Yuan, Z., Wyglinski, A.: On sidelobe suppression for multicarrier-based transmission in dynamic spectrum access networks. IEEE Trans. Veh. Technol. 59(4), 1998 – 2006 (2010)CrossRefGoogle Scholar
  195. 195.
    Zayani, R., Medjahdi, Y., Shaiek, H., Roviras, D.: WOLA-OFDM: A potential candidate for asynchronous 5G. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–5 (2016).
  196. 196.
    Zhang, H., LeRuyet, D., Roviras, D., Medjahdi, Y., Sun, H.: Spectral efficiency comparison of OFDM/FBMC for uplink cognitive radio networks. EURASIP J. Advances Signal Processing 2010, 1–14 (2010)Google Scholar
  197. 197.
    Zhou, D., DeBrunner, V.E.: Novel adaptive nonlinear predistorters based on the direct learning algorithm. IEEE Trans. Signal Processing 55(1), 120–133 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    Zhou, G.T., et al.: On the baseband representation of a bandpass nonlinearity. IEEE Trans. Signal Processing 53(8), 2953–2957 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    Zhu, Y., Letaief, K.: Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications. IEEE Trans. Wireless Commun. 5(12), 3548–3557 (2006)CrossRefGoogle Scholar
  200. 200.
    Zou, Q., Tarighat, A., Sayed, A.: Compensation of phase noise in OFDM wireless systems. IEEE Trans. Signal Processing 55(11), 5407 –5424 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Zou, Y., Valkama, M., Renfors, M.: Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems. IEEE Trans. Signal Processing 56(6), 2496 –2508 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tampere University of TechnologyFaculty of Computing and Electrical EngineeringTampereFinland
  2. 2.University of OuluCentre for Wireless CommunicationsOuluFinland

Personalised recommendations