Skip to main content

Kahn Process Networks and a Reactive Extension

  • Chapter
  • First Online:

Abstract

Kahn and MacQueen have introduced a generic class of determinate asynchronous data-flow applications, called Kahn Process Networks (KPNs) with an elegant mathematical model and semantics in terms of Scott-continuous functions on data streams together with an implementation model of independent asynchronous sequential programs communicating through FIFO buffers with blocking read and non-blocking write operations. The two are related by the Kahn Principle which states that a realization according to the implementation model behaves as predicted by the mathematical function. Additional steps are required to arrive at an actual implementation of a KPN to take care of scheduling of independent processes on a single processor and to manage communication buffers. Because of the expressiveness of the KPN model, buffer sizes and schedules cannot be determined at design time in general and require dynamic run-time system support. Constraints are discussed that need to be placed on such system support so as to maintain the Kahn Principle. We then discuss a possible extension of the KPN model to include the possibility for sporadic, reactive behavior which is not possible in the standard model. The extended model is called Reactive Process Networks. We introduce its semantics, look at analyzability and at more constrained data-flow models combined with reactive behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen G, Evans B, Schanbacher D (1998) Real-time sonar beamforming on a UNIX workstation using process networks and POSIX threads. In: Proc. of the 32nd Asilomar Conference on Signals, Systems and Computers, IEEE Computer Society, pp 1725–1729

    Google Scholar 

  2. Allen G, Zucknick P, Evans B (2007) A distributed deadlock detection and resolution algorithm for process networks. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol 2, pp II–33–II–36, https://doi.org/10.1109/ICASSP.2007.366165

  3. Basten T, Hoogerbrugge J (2001) Efficient execution of process networks. In: Chalmers A, Mirmehdi M, Muller H (eds) Proc. of Communicating Process Architectures 2001, Bristol, UK, September 2001, IOS Press, pp 1–14

    Google Scholar 

  4. Benveniste A, Guemic PL (1990) Hybrid dynamical systems theory and the signal language. IEEE Trans Automat Contr 35:535–546

    Article  MathSciNet  Google Scholar 

  5. Benveniste A, Caillaud B, Carloni LP, Caspi P, Sangiovanni-Vincentelli AL (2008) Composing heterogeneous reactive systems. ACM Trans Embed Comput Syst 7(4):1–36

    Article  Google Scholar 

  6. Berry G, Gonthier G (1992) The Esterel synchronous programming language: Design, semantics, implementation. Sci Comput Program 19:87–152

    Article  Google Scholar 

  7. Bhattacharya B, Bhattacharyya S (2001) Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing 49(10):2408–2421

    Article  MathSciNet  Google Scholar 

  8. Bhattacharyya S, Murthy P, Lee E (1999) Synthesis of embedded software from synchronous dataflow specifications. J VLSI Signal Process Syst 21(2):151–166

    Article  Google Scholar 

  9. Bhattacharyya SS, Deprettere EF, Theelen BD (2013) Dynamic Dataflow Graphs, Springer New York, New York, NY, pp 905–944. https://doi.org/10.1007/978-1-4614-6859-2_28, URL http://dx.doi.org/10.1007/978-1-4614-6859-2_28

    Chapter  Google Scholar 

  10. Brock J, Ackerman W (1981) Scenarios: A model of non-determinate computation. In: Díaz J, Ramos I (eds) Formalization of Programming Concepts, International Colloquium, Peniscola, Spain, April 19–25, 1981, Proceedings, LNCS Vol. 107, Springer Verlag, Berlin, pp 252–259

    Chapter  Google Scholar 

  11. Brookes S (1998) On the Kahn principle and fair networks. Tech. Rep. CMU-CS-98-156, School of Computer Science, Carnegie Mellon University

    Google Scholar 

  12. Broy M, Dendorfer C (1992) Modelling operating system structures by timed stream processing functions. Journal of Functional Programming 2(1):1–21, URL http://citeseer.nj.nec.com/broy92modelling.html

    Article  Google Scholar 

  13. Buck J (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow model. PhD thesis, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  14. Carloni LP, Sangiovanni-Vincentelli AL (2006) A framework for modeling the distributed deployment of synchronous designs. Form Methods Syst Des 28:93–110

    Article  Google Scholar 

  15. Castrillon J, Tretter A, Leupers R, Ascheid G (2012) Communication-aware mapping of kpn applications onto heterogeneous mpsocs. In: Proceedings of the 49th Annual Design Automation Conference, ACM, New York, NY, USA, DAC ’12, pp 1266–1271, https://doi.org/10.1145/2228360.2228597, URL http://doi.acm.org/10.1145/2228360.2228597

  16. Cheng S, Wawrzynek J (2016) Synthesis of statically analyzable accelerator networks from sequential programs. In: Proceedings of the 35th International Conference on Computer-Aided Design, ACM, New York, NY, USA, ICCAD ’16, pp 126:1–126:8, https://doi.org/10.1145/2966986.2967077, URL http://doi.acm.org/10.1145/2966986.2967077

  17. Davey BA, Priestley HA (1990) Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  18. Dulloo J, Marquet P (2004) Design of a real-time scheduler for Kahn Process Networks on multiprocessor systems. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA, pp 271–277

    Google Scholar 

  19. Eker J, Janneck J, Lee EA, Liu J, Liu X, Ludvig J, Sachs S, Xiong Y (2003) Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1):127–144, URL http://chess.eecs.berkeley.edu/pubs/488.html

    Article  Google Scholar 

  20. Falk J, Haubelt C, Zebelein C, Teich J (2013) Integrated Modeling Using Finite State Machines and Dataflow Graphs, Springer New York, New York, NY, pp 975–1013. https://doi.org/10.1007/978-1-4614-6859-2_30, URL http://dx.doi.org/10.1007/978-1-4614-6859-2_30

    Chapter  Google Scholar 

  21. Faustini A (1982) An operational semantics for pure dataflow. In: Nielsen M, Schmidt EM (eds) Automata, Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12–16, 1982, Proceedings, LNCS Vol. 140, Springer Verlag, Berlin, pp 212–224

    Google Scholar 

  22. Geilen M (2009) An hierarchical compositional operational semantics of Kahn Process Networks and its Kahn Principle. Tech. rep., Electronic Systems Group, Dept. of Electrical Engineering, Eindhoven University of Technology

    Google Scholar 

  23. Geilen M (2011) Synchronous data flow scenarios. Transactions on Embedded Computing Systems 10(2):16:1–16:31

    Article  MathSciNet  Google Scholar 

  24. Geilen M, Basten T (2003) Requirements on the execution of Kahn process networks. In: Degano P (ed) Proc. Of the 12th European Symposium on Programming, ESOP 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7–11, 2003. LNCS Vol.2618, Springer Verlag, Berlin

    Chapter  Google Scholar 

  25. Geilen M, Basten T (2004) Reactive process networks. In: EMSOFT ’04: Proceedings of the 4th ACM international conference on Embedded software, ACM, New York, NY, USA, pp 137–146, http://doi.acm.org/10.1145/1017753.1017778

    Chapter  Google Scholar 

  26. Geilen M, Stuijk S (2010) Worst-case performance analysis of synchronous dataflow scenarios. In: International Conference on Hardware-Software Codesign and System Synthesis, CODES+ISSS 10, Proc., Scottsdale, Az, USA, 24–29 October, 2010, pp 125–134

    Google Scholar 

  27. Geilen M, Falk J, Haubelt C, Basten T, Theelen B, Stuijk S (2017) Performance analysis of weakly-consistent scenario-aware dataflow graphs. Journal of Signal Processing Systems 87(1):157–175, https://doi.org/10.1007/s11265-016-1193-7, URL http://dx.doi.org/10.1007/s11265-016-1193-7

    Article  Google Scholar 

  28. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 18(6):742–760

    Article  Google Scholar 

  29. Goel M (1998) Process networks in Ptolemy II. Technical Memorandum UCB/ERL No. M98/69, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  30. Ha S, Oh H (2013) Decidable Dataflow Models for Signal Processing: Synchronous Dataflow and Its Extensions, Springer New York, New York, NY, pp 1083–1109. https://doi.org/10.1007/978-1-4614-6859-2_33, URL http://dx.doi.org/10.1007/978-1-4614-6859-2_33

    Chapter  Google Scholar 

  31. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous programming language LUSTRE. Proceedings of the IEEE 79:1305–1319

    Article  Google Scholar 

  32. Jiang B, Deprettere E, Kienhuis B (2008) Hierarchical run time deadlock detection in process networks. In: Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp 239–244, https://doi.org/10.1109/SIPS.2008.4671769

  33. Jonsson B (1989) A fully abstract trace model for dataflow networks. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM, New York, NY, USA, pp 155–165

    Chapter  Google Scholar 

  34. Kahn G (1974) The semantics of a simple language for parallel programming. In: Rosenfeld J (ed) Information Processing 74: Proceedings of the IFIP Congress 74, Stockholm, Sweden, August 1974, North-Holland, Amsterdam, Netherlands, pp 471–475

    Google Scholar 

  35. Kahn G, MacQueen D (1977) Coroutines and networks of parallel programming. In: Gilchrist B (ed) Information Processing 77: Proceedings of the IFIP Congress 77, Toronto, Canada, August 8–12, 1977, North-Holland, pp 993–998

    Google Scholar 

  36. Kock, de et al E (2000) YAPI: Application modeling for signal processing systems. In: Proc. of the 37th. Design Automation Conference, Los Angeles, CA, June 2000, IEEE, pp 402–405

    Google Scholar 

  37. Lee B (2000) Specification and design of reactive systems. PhD thesis, Electronics Research Laboratory, University of California, EECS Dept., Berkeley, CA, memorandum UCB/ERL M00/29

    Google Scholar 

  38. Lee E (2001) Overview of the Ptolemy project. Technical Memorandum UCB/ERL No. M01/11, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  39. Lee E, Messerschmitt D (1987) Synchronous data flow. IEEE Proceedings 75(9):1235–1245

    Article  Google Scholar 

  40. Lee E, Sangiovanni-Vincentelli A (Dec 1998) A framework for comparing models of computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 17(12):1217–1229, https://doi.org/10.1109/43.736561

    Article  Google Scholar 

  41. Lee EA, Matsikoudis E (2007) The Semantics of Dataflow with Firing, Cambridge University Press. URL http://chess.eecs.berkeley.edu/pubs/428.html, chapter from “From Semantics to Computer Science: Essays in memory of Gilles Kahn”

  42. Li P, Agrawal K, Buhler J, Chamberlain RD (2010) Deadlock avoidance for streaming computations with filtering. In: Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and Architectures, ACM, New York, NY, USA, SPAA ’10, pp 243–252, https://doi.org/10.1145/1810479.1810526, URL http://doi.acm.org/10.1145/1810479.1810526

  43. Liu X, Lee EA (2008) Cpo semantics of timed interactive actor networks. Theor Comput Sci 409(1):110–125, http://dx.doi.org/10.1016/j.tcs.2008.08.044

    Article  MathSciNet  Google Scholar 

  44. Lynch N, Stark E (1989) A proof of the Kahn principle for Input/Output automata. Information and Computation 82(1):81–92, URL http://citeseer.nj.nec.com/lynch89proof.html

    Article  MathSciNet  Google Scholar 

  45. Martin A (1985) The probe: An addition to communication primitives. Information Processing Letters 20(3):125–130

    Article  MathSciNet  Google Scholar 

  46. Neuendorffer S, Lee EA (2004) Hierarchical reconfiguration of dataflow models. In: Proc. Second ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2004), IEEE Computer Society Press

    Google Scholar 

  47. Olson A, Evans B (2005) Deadlock detection for distributed process networks. In: Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Conference on, vol 5, pp v/73–v/76 Vol. 5, https://doi.org/10.1109/ICASSP.2005.1416243

  48. Park D (1979) On the semantics of fair parallelism. In: Abstract Software Specifications, Volume 86 of Lecture Notes in Computer Science, Springer Verlag, Berlin

    Google Scholar 

  49. Parks T (1995) Bounded Scheduling of Process Networks. PhD thesis, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  50. Plotkin G (1981) A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Århus University, Computer Science Department, Århus, Denmark

    Google Scholar 

  51. Poplavko P, Basten T, van Meerbergen J (2007) Execution-time prediction for dynamic streaming applications with task-level parallelism. In: DSD ’07: Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, IEEE Computer Society, Washington, DC, USA, pp 228–235, http://dx.doi.org/10.1109/DSD.2007.52

    Google Scholar 

  52. Rai D, Schor L, Stoimenov N, Thiele L (2013) Distributed stable states for process networks - algorithm, analysis, and experiments on intel scc. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp 1–10

    Google Scholar 

  53. Russell J (1989) Full abstraction for nondeterministic dataflow networks. Symposium on Foundations of Computer Science 0:170–175, http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63474

  54. Schor L, Bacivarov I, Yang H, Thiele L (2014) Adapnet: Adapting process networks in response to resource variations. In: Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, ACM, New York, NY, USA, CASES ’14, pp 22:1–22:10, https://doi.org/10.1145/2656106.2656112, URL http://doi.acm.org/10.1145/2656106.2656112

  55. Sriram S, Bhattacharyya SS (2000) Embedded Multiprocessors: Scheduling and Synchronization. Marcel Dekker, Inc., New York, NY, USA

    Google Scholar 

  56. Stark E (1987) Concurrent transition system semantics of process networks. In: Proc. of the 1987 SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Munich, Germany, January 1987, ACM Press, pp 199–210

    Google Scholar 

  57. Stevens R, Wan M, Laramie P, Parks T, Lee E (1997) Implementation of process networks in Java. Technical Memorandum UCB/ERL No. M97/84, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  58. Strehl K, Thiele L, Gries M, Ziegenbein D, Ernst R, Teich J (2001) FunState - an internal design representation for codesign. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(4):524–544, URL http://citeseer.nj.nec.com/strehl01funstate.html

    Article  Google Scholar 

  59. Theelen BD, Geilen M, Basten T, Voeten J, Gheorghita SV, Stuijk S (2006) A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In: Proceedings of the Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design 2006 (MEMOCODE ’06), pp 185–194

    Google Scholar 

  60. Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: A language for streaming applications. In: Horspool RN (ed) Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8–12, 2002, Proceedings, LNCS Vol. 2306, Springer Verlag, Berlin, pp 179–196

    Google Scholar 

  61. Thies W, Karczmarek M, Sermulins J, Rabbah R, Amarasinghe S (2005) Teleport messaging for distributed stream programs. In: PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, ACM, New York, NY, USA, pp 224–235, http://doi.acm.org/10.1145/1065944.1065975

    Chapter  Google Scholar 

  62. Thomas T Hildebrandt GW Prakash Panangaden (2004) A relational model of non-deterministic dataflow. Mathematical Structures in Computer Science pp 613–649

    Google Scholar 

  63. Vayssière J, Webb D, Wendelborn A (1999) Distributed process networks. Tech. Rep. TR 99-03, University of Adelaide, Department of Computer Science, South Australia 5005, Australia

    Google Scholar 

  64. Verdoolaege S (2013) Polyhedral Process Networks, Springer New York, New York, NY, pp 1335–1375. https://doi.org/10.1007/978-1-4614-6859-2_41

    Chapter  Google Scholar 

  65. Yates RK (1993) Networks of real-time processes. In: Best E (ed) CONCUR’93: Proc. of the 4th International Conference on Concurrency Theory, Springer Verlag, Berlin, Heidelberg, pp 384–397

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the EC through FP7 IST project 216224, MNEMEE and by the Netherlands Ministry of Economic Affairs under the Senter TS program in the Octopus project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Geilen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geilen, M., Basten, T. (2019). Kahn Process Networks and a Reactive Extension. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics