Intermediate representations for simulation and implementation

  • Jerker BengtssonEmail author


Simulation and implementation of DSP systems is often a challenge due to their complex dynamic behaviour and requirements on non functional properties. This chapter presents examples of high-level intermediate representations for implementation of design tools for parallel DSP platforms, considering modeling of non constant behaviour of programs; specialized models of computation; scheduling strategies; heterogeneous and hierarchical specifications of systems; and implementing performance analysis for design space exploration and optimization of assignments during a development process. Examples from different intermediate representations that are representative for explored techniques for simulation and implementation are presented. The basic structure and the usage of these representations are demonstrated with examples.


  1. 1.
    Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: Hardware-software co-design of embedded systems: the POLIS approach. Kluwer Academic Publishers, Norwell, MA, USA (1997)CrossRefGoogle Scholar
  2. 2.
    Bengtsson, J., Svensson, B.: Manycore performance analysis using timed configuration graphs. In: IEEE International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, pp. 108–117. Samos, Greece (2009)Google Scholar
  3. 3.
    Cedersjo, G.: Efficient Software Implementation of Stream Programs. PhD Dissertation, Department of Computer Science, Lund University (2017)Google Scholar
  4. 4.
    Bossung, W., Huss, S.A., Klaus, S.: High-level embedded system specifications based on process activation conditions. VLSI Signal Processing Systems 21(3), 277–291 (1999).CrossRefGoogle Scholar
  5. 5.
    Cieslok, F., Teich, J.: Timing analysis of process models with uncertain behaviour. Tech. rep., Computer Engineering Laboratory (DATE), University of Paderborn (2000)Google Scholar
  6. 6.
    B. De Sutter, P. Raghavan, A. Lambrechts, Coarse-grained reconfigurable array architectures. In: S.S. Bhattacharyya, E.F., Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer, New York (2018).
  7. 7.
    Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P.: Scheduling of conditional process graphs for the synthesis of embedded systems. Design, Automation and Test in Europe Conference and Exhibition pp. 132–139 (1998).Google Scholar
  8. 8.
    Geilen, M., Stuijk, S.: Worst-case Performance Analysis of Synchronous Dataflow Scenarios. In: Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 125–134. Scottsdale, Arizona, USA (2010).Google Scholar
  9. 9.
    Grotker, T., Schoenen, R., Meyr, H.: PCC: a modeling technique for mixed control/data flow systems. In: Proceedings of the 1997 European conference on Design and Test, pp. 482–486. IEEE Computer Society, Washington, DC, USA (1997)Google Scholar
  10. 10.
    Janneck, J.W.: A machine model for dataflow actors and its applications In: Signals, Systems and Computers (ASILOMAR), Conference Record of the Forty Fifth Asilomar Conference on, pp. 756–760, IEEE, Pacific Grove, CA, USA (2011).Google Scholar
  11. 11.
    Lee, E.A., Goe, E.E., Heine, H., Ho, W.H., Bhattacharyya, S., Bier, J.C., Guntvedt, E.: GABRIEL: a design environment for programmable DSPs. In: Proceedings of the 26th ACM/IEEE Design Automation Conference, pp. 141–146. ACM, New York, NY, USA (1989).Google Scholar
  12. 12.
    Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time DSP. In: Proc of the IEEE Global Telecommunications Conference, vol. 2, pp. 1279–1283 (1989).Google Scholar
  13. 13.
    Leupers, R., Aguilar, M.A., Castrillon, J., Sheng, W.: Software compilation techniques for heterogeneous embedded multi-core systems. In: S.S. Bhattacharyya, E.F., Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer, New York (2018).
  14. 14.
    Pankert, M., Mauss, O., Ritz, S., Meyr, H.: Dynamic data flow and control flow in high level dsp code synthesis. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 449–452. Adelaide, SA, Australia (1994)Google Scholar
  15. 15.
    Poplavko, P., Basten, T., Bekooij, M.J.G., Meerbergen, J.V.V., Mesman, B.: Task-level timing models for guaranteed performance in multiprocessor networks-on-chip. In: Proceedings of the International Conference on Compilers, Architecture, and Synthesis of Embedded Systems, pp. 63–72 (2003)Google Scholar
  16. 16.
    Smith, J.R.W., Reed, R.: Telecommunications Systems Engineering Using SDL. Elsevier Science Inc., New York, NY, USA (1989)Google Scholar
  17. 17.
    Sriram, S., Lee, E.A.: Determining the order of processor transactions in statically scheduled multiprocessors. VLSI Signal Processing Systems. 15(3), 207–220 (1997).CrossRefGoogle Scholar
  18. 18.
    Thiele, L., Strehl, K., Ziegenbein, D., Ernst, R., Teich, J.: FunState – an internal design representation for codesign. In: ICCAD ’99: Proceedings of the 1999 IEEE/ACM international conference on Computer-aided design, pp. 558–565. IEEE Press, Piscataway, NJ, USA (1999)Google Scholar
  19. 19.
    Thiele, L., Teich, J., Naedele, M., Strehl, K., Ziegenbein, D.: SCF - state machine controlled flow diagrams. Tech. Rep. TIK-33, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich (1998)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saab GroupStockholmSweden

Personalised recommendations