Inertial Sensors and Their Applications

  • Jussi CollinEmail author
  • Pavel Davidson
  • Martti Kirkko-Jaakkola
  • Helena Leppäkoski


Due to the universal presence of motion, vibration, and shock, inertial motion sensors can be applied in various contexts. Development of the microelectromechanical (MEMS) technology opens up many new consumer and industrial applications for accelerometers and gyroscopes. The multiformity of applications creates different requirements to inertial sensors in terms of accuracy, size, power consumption and cost. This makes it challenging to choose sensors that are suited best for the particular application. In addition, development of signal processing algorithms for inertial sensor data require understanding on the physical principles of both motion generated and sensor operation principles. This chapter aims to aid the system designer to understand and manage these challenges. The principles of operation of accelerometers and gyroscopes are explained with examples of different applications using inertial sensors data as input. Especially, detailed examples of signal processing algorithms for pedestrian navigation and motion classification are given.


  1. 1.
    Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, pp. 1–6. IEEE (2014)Google Scholar
  2. 2.
    Allan, D.W.: Statistics of atomic frequency standards. Proc. IEEE 54(2), 221–230 (1966)CrossRefGoogle Scholar
  3. 3.
    Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 43, 3605–3620 (2010)CrossRefGoogle Scholar
  4. 4.
    Armenise, M.N., Ciminelli, C., Dell’Olio, F., Passaro, V.: Advances in Gyroscope Technologies. Springer Verlag (2010)Google Scholar
  5. 5.
    Bortz, J.E.: A new mathematical formulation for strapdown inertial navigation. IEEE Transactions on Aerospace and Electronic Systems AES-7(1), 61–66 (1971). CrossRefGoogle Scholar
  6. 6.
    Bosch Sensortec: BMI160 small, low power inertial measurement unit. rev. 08. Doc.Nr. BST-BMI160-DS000-07, Data sheet (2015)Google Scholar
  7. 7.
    Brajdic, A., Harle, R.: Walk detection and step counting on unconstrained smartphones. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13, pp. 225–234. ACM, New York, NY, USA (2013)Google Scholar
  8. 8.
    Broffit, J.D.: Nonparametric classification. In: P.R. Krishnaiah, L.N. Kanal (eds.) Handbook of Statistics 2. North-Holland (1990)Google Scholar
  9. 9.
    Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. John Wiley & Sons (1997)Google Scholar
  10. 10.
    Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. ACM, New York, NY, USA (2016).
  11. 11.
    Collin, J., Davidson, P., Kirkko-Jaakkola, M., Leppäkoski, H.: Inertial sensors and their applications. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems. Springer New York (2013)CrossRefGoogle Scholar
  12. 12.
    Combettes, C., Renaudin, V.: Comparison of misalignment estimation techniques between handheld device and walking directions. In: 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8 (2015).
  13. 13.
    Davidson, P., Piche, R.: A survey of selected indoor positioning methods for smartphones. IEEE Communications Surveys Tutorials 19(2), 1347–1370 (2017). CrossRefGoogle Scholar
  14. 14.
    Diaz, E.M., Gonzalez, A.L.M.: Step detector and step length estimator for an inertial pocket navigation system. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 105–110 (2014)Google Scholar
  15. 15.
    Dixon, R., Bobeye, M.: Performance differentiation in a tightly coupled gnss/ins solution. In: Proc. ION GNSS+ 2016 (2016)Google Scholar
  16. 16.
    Elhoushi, M., Georgy, J., Noureldin, A., Korenberg, M.J.: A survey on approaches of motion mode recognition using sensors. IEEE Transactions on Intelligent Transportation Systems (2016). CrossRefGoogle Scholar
  17. 17.
    Fairchild Semiconductor Corporation: FIS1100 6D Inertial Measurement Unit with Motion Co-Processor and Sensor Fusion Library (2016). Data sheet rev. 1.2Google Scholar
  18. 18.
    Farrell, J.: Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc. (2008)Google Scholar
  19. 19.
    Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications 25(6), 38–46 (2005). CrossRefGoogle Scholar
  20. 20.
    Gianchandani, Y.B., Tabata, O., Zappe, H.P.: Comprehensive microsystems. Elsevier (2008)Google Scholar
  21. 21.
    Google: DetectedActivity API for Android. (2017). [Online; accessed 29-March-2017]
  22. 22.
    Groves, P.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition:. GNSS/GPS. Artech House (2013).
  23. 23.
    Gusenbauer, D., Isert, C., Krösche, J.: Self-contained indoor positioning on off-the-shelf mobile devices. In: 2010 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–9 (2010)Google Scholar
  24. 24.
    Hanning, G., Forslöw, N., Forssén, P.E., Ringaby, E., Törnqvist, D., Callmer, J.: Stabilizing cell phone video using inertial measurement sensors. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pp. 1–8. IEEE (2011)Google Scholar
  25. 25.
    Harle, R.: A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys Tutorials 15(3), 1281–1293 (2013)CrossRefGoogle Scholar
  26. 26.
    Honeywell Aerospace, Phoenix, AZ, USA: HG1700 Inertial Measurement Unit (2016). Data sheet N61-1619-000-000 I 09/16Google Scholar
  27. 27.
    Honeywell Aerospace, Phoenix, AZ, USA: HG9900 Inertial Measurement Unit (2016). Data sheet N61-1638-000-000 I 10/16Google Scholar
  28. 28.
    IEEE standard for inertial sensor terminology. IEEE Std 528-2001 (2001)Google Scholar
  29. 29.
    IEEE standard specification format guide and test procedure for single-axis laser gyros. IEEE Std 647-1995 (1996)Google Scholar
  30. 30.
    Ignagni, M.: Optimal strapdown attitude integration algorithms. Journal of Guidance, Control, and Dynamics 13(2), 363–369 (1990)CrossRefGoogle Scholar
  31. 31.
    iMAR Navigation GmbH, St. Ingbert, Germany: iNAT-RQH400x (2017). Data sheet rev. 1.13Google Scholar
  32. 32.
    Jahn, J., Batzer, U., Seitz, J., Patino-Studencka, L., Gutiérrez Boronat, J.: Comparison and evaluation of acceleration based step length estimators for handheld devices. In: Proc. Int. Conf. on Indoor Positioning and Indoor Navigation, pp. 1–6. Zurich, Switzerland (2010)Google Scholar
  33. 33.
    Käppi, J., Syrjärinne, J., Saarinen, J.: MEMS-IMU based pedestrian navigator for handheld devices. In: Proc. ION GPS, pp. 1369–1373. Salt Lake City, UT (2001)Google Scholar
  34. 34.
    Keshner, M.S.: 1∕f noise. Proc. IEEE 70(3), 212–218 (1982)CrossRefGoogle Scholar
  35. 35.
    Kirkko-Jaakkola, M., Collin, J., Takala, J.: Bias prediction for MEMS gyroscopes. IEEE Sensors J. (2012). CrossRefGoogle Scholar
  36. 36.
    Kourogi, M., Kurata, T.: Personal positioning based on walking locomotion analysis with self-contained sensors and a wearable camera. In: The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings., pp. 103–112 (2003).
  37. 37.
    Krobka, N.I.: Differential methods of identifying gyro noise structure. Gyroscopy and Navigation 2, 126–137 (2011)CrossRefGoogle Scholar
  38. 38.
    Ladetto, Q.: On foot navigation: continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In: Proc. ION GPS, pp. 1735–1740. Salt Lake City, UT (2000)Google Scholar
  39. 39.
    Leland, R.P.: Mechanical-thermal noise in MEMS gyroscopes. IEEE Sensors J. 5(3), 493–500 (2005)CrossRefGoogle Scholar
  40. 40.
    Levi, R.W., Judd, T.: Dead reckoning navigational system using accelerometer to measure foot impacts. U.S. Patent 5,583,776 (1996)Google Scholar
  41. 41.
    Lightman, K.: Silicon gets sporty. IEEE Spectrum 53(3), 48–56 (2016)CrossRefGoogle Scholar
  42. 42.
    Martin, H., Groves, P., Newman, M.: The limits of in-run calibration of mems inertial sensors and sensor arrays. Navigation 63(2), 127–143 (2016). Navi.135CrossRefGoogle Scholar
  43. 43.
    Meriheinä, U.: Method and device for measuring the progress of a moving person. U.S. Patent 7,962,309 (2007)Google Scholar
  44. 44.
    Mezentsev, O., Collin, J., Lachapelle, G.: Pedestrian Dead Reckoning – A Solution to Navigation in GPS Signal Degraded Areas. Geomatica 59(2), 175–182 (2005)Google Scholar
  45. 45.
    Nitschke, M., Knickmeyer, E.H.: Rotation parameters-a survey of techniques. Journal of surveying engineering 126(3), 83–105 (2000)CrossRefGoogle Scholar
  46. 46.
    Northrop Grumman LITEF GmbH, Freiburg, Germany: LCI-100C Inertial Measurement Unit (2013). Data sheetGoogle Scholar
  47. 47.
    Pellman, E.J., Viano, D.C., Withnall, C., Shewchenko, N., Bir, C.A., Halstead, P.D.: Concussion in professional football: helmet testing to assess impact performance–part 11. Neurosurgery 58(1), 78–95 (2006)CrossRefGoogle Scholar
  48. 48.
    Prikhodko, I.P., Zotov, S.A., Trusov, A.A., Shkel, A.M.: What is mems gyrocompassing? comparative analysis of maytagging and carouseling. Journal of Microelectromechanical Systems 22(6), 1257–1266 (2013). CrossRefGoogle Scholar
  49. 49.
    Read, J., Martino, L., Hollmén, J.: Multi-label methods for prediction with sequential data. Pattern Recognition 63, 45–55 (2017). CrossRefGoogle Scholar
  50. 50.
    Ren, M., Pan, K., Liu, Y., Guo, H., Zhang, X., Wang, P.: A novel pedestrian navigation algorithm for a foot-mounted inertial-sensor-based system. Sensors 16(1) (2016). CrossRefGoogle Scholar
  51. 51.
    Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Tech. rep., Xsens Motion Technologies BV (2009)Google Scholar
  52. 52.
    Rong, L., Zhiguo, D., Jianzhong, Z., Ming, L.: Identification of individual walking patterns using gait acceleration. In: 2007 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 543–546 (2007)Google Scholar
  53. 53.
    Rothman, Y., Klein, I., Filin, S.: Analytical observability analysis of ins with vehicle constraints. Navigation 61(3), 227–236 (2014). NAVI-2014-006.R1CrossRefGoogle Scholar
  54. 54.
    Savage, P.: Strapdown inertial navigation integration algorithm design. Journal of Guidance, Control and Dynamics 21(1-2) (1998)CrossRefGoogle Scholar
  55. 55.
    Savage, P.G.: Laser gyros in strapdown inertial navigation systems. In: Proc. IEEE Position, Location, and Navigation Symp. San Diego, CA (1976)Google Scholar
  56. 56.
    Sierociuk, D., Tejado, I., Vinagre, B.M.: Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Process. 91(3), 542–552 (2011)CrossRefGoogle Scholar
  57. 57.
    Skog, I., Händel, P., Nilsson, J.O., Rantakokko, J.: Zero-velocity detection—an algorithm evaluation. IEEE Transactions on Biomedical Engineering 57(11), 2657–2666 (2010). CrossRefGoogle Scholar
  58. 58.
    Skog, I., Nilsson, J.O., Händel, P., Nehorai, A.: Inertial sensor arrays, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Signal Processing 64(16), 4218–4227 (2016). MathSciNetCrossRefGoogle Scholar
  59. 59.
    STMicroelectronics: LSM6DSL iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope (2017). Data sheet rev. 7Google Scholar
  60. 60.
    Titterton, D.H., Weston, J.L.: Strapdown Inertial Navigation Technology, 2nd edn. American Institute of Aeronautics and Astronautics, Reston, VA (2004)Google Scholar
  61. 61.
    Tweed, D.B., Haslwanter, T.P., Happe, V., Fetter, M.: Non-commutativity in the brain. Nature 399(6733), 261–263 (1999)CrossRefGoogle Scholar
  62. 62.
    Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., Fafoutis, X., Zhu, N., Woznowski, P., Flach, P., Craddock, I.: The SPHERE challenge: Activity recognition with multimodal sensor data. arXiv preprint arXiv:1603.00797 (2016)Google Scholar
  63. 63.
    Voisin, M., Dreyfus-Schmidt, L., Gutierrez, P., Ronsin, S., Beillevaire, M.: Dataiku’s solution to sphere’s activity recognition challenge (2016)Google Scholar
  64. 64.
    Voss, R.F.: 1∕f (flicker) noise: A brief review. In: Proc. 33rd Ann. Symp. Frequency Control, pp. 40–46 (1979)Google Scholar
  65. 65.
    Webb, A.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons, LTD (2002)CrossRefGoogle Scholar
  66. 66.
    Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp ’08, pp. 114–123. ACM, New York, NY, USA (2008).
  67. 67.
    Xsens MVN – inertial motion capture.
  68. 68.
    Yu, J., Chen, Z., Zhu, Y., Chen, Y., Kong, L., Li, M.: Fine-grained abnormal driving behaviors detection and identification with smartphones. IEEE Transactions on Mobile Computing (2016). CrossRefGoogle Scholar
  69. 69.
    Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering 26(8), 1819–1837 (2014). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jussi Collin
    • 1
    Email author
  • Pavel Davidson
    • 2
  • Martti Kirkko-Jaakkola
    • 3
  • Helena Leppäkoski
    • 2
  1. 1.Laboratory of Pervasive ComputingTampere University of TechnologyTampereFinland
  2. 2.Laboratory of Automation and HydraulicsTampere University of TechnologyTampereFinland
  3. 3.Finnish Geospatial Research InstituteNational Land Survey of FinlandHelsinkiFinland

Personalised recommendations