Skip to main content

Signal Processing Methods for Light Field Displays

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

This chapter discusses the topic of emerging light field displays from a signal processing perspective. Light field displays are defined as devices which deliver continuous parallax along with the focus and binocular visual cues acting together in rivalry-free manner. In order to ensure such functionality, one has to deal with the light field, conceptualized by the plenoptic function and its adequate parametrization, sampling and reconstruction. The light field basics and the corresponding display technologies are overviewed in order to address the fundamental problems of analyzing light field displays as signal processing channels, and of capturing and representing light field visual content for driving such displays. Spectral analysis of multidimensional sampling operators is utilized to profile the displays in question, and modern sparsification approaches are employed to develop methods for high-quality light field reconstruction and rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-151, 1939.

    Article  Google Scholar 

  2. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing. MIT Press, pp. 3-20, 1991.

    Google Scholar 

  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH, 1996, pp. 31-42.

    Google Scholar 

  4. S.J.Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph”, in Proc. ACM SIGGRAPH, 1996, pp. 43-54.

    Google Scholar 

  5. P. Moon and D.E. Spencer, The Photic Field. MIT Press, 1981.

    Google Scholar 

  6. R. Bregović, P. T. Kovács, T. Balogh, and A. Gotchev, “Display-specific light-field analysis,” in Proc. SPIE 9117, 911710, 2014.

    Google Scholar 

  7. C. K. Liang, Y. C. Shih, and H. H. Chen, “Light field analysis for modeling image formation,” IEEE Trans. Image Process. Vol. 20, no. 2, 446–460, 2011.

    Article  MathSciNet  Google Scholar 

  8. R. Bregović, P. T. Kovács, and A. Gotchev, “Optimization of light field display-camera configuration based on display properties in spectral domain,” Optics Express, vol. 24, no. 3, pp. 3067-3088, Feb. 2016.

    Article  Google Scholar 

  9. R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to determine structure from motion,” Int. J. Comput. Vis., vol. 1, no. 1, pp. 7-55, 1987.

    Article  Google Scholar 

  10. J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. ACM SIGGRAPH 2000, pp. 307-318.

    Google Scholar 

  11. C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp 1038-1050, Nov. 2003.

    Google Scholar 

  12. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic layer-based modeling for image based rendering,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3405–3419, Sep. 2013.

    Google Scholar 

  13. C. Gilliam, P.L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE Trans. Image Proc., vol. 23, no. 2, pp. 502-516, Feb. 2014.

    Article  MathSciNet  Google Scholar 

  14. D. R. Proffitt and C. Caudek, “Depth perception and the perception of events,” in Handbook of Psychology. New York, NY, 2002.

    Google Scholar 

  15. A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable Light Fields: Matching the Requirements Between the Human Visual System and Autostereoscopic 3-D Displays,” Proc IEEE vol. 102, no. 10, pp. 1571-1587, 2014.

    Article  Google Scholar 

  16. L. Goldmann and T. Ebrahimi, “Towards reliable and reproducible 3-D video quality assessment,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 8043, 2011.

    Google Scholar 

  17. A. Boev, R. Bregović, and A. Gotchev, “Signal processing for stereoscopic and multi-view 3D displays,” in Handbook of Signal Processing Systems, 2nd edition, S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, eds., Springer, 2013.

    Google Scholar 

  18. M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, “3D Displays,” Annual Review of Vision Science, vol. 2, pp. 397-435, 2016.

    Article  Google Scholar 

  19. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no. 33, 2008.

    Article  Google Scholar 

  20. F. L. Kooi and M, Lucassen, “Visual comfort of binocular and 3D displays,” in Proc. SPIE 4299, Human Vision and Electronic Imaging VI, 586, 2001.

    Google Scholar 

  21. P. A. Howarth, “Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review,” Ophthalmic and Physiological Optics, vol. 31, pp 111–122, 2011.

    Article  Google Scholar 

  22. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A, vol. 33, no. 12, 2348-2364, 2016.

    Article  Google Scholar 

  23. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” in Proc. of Third International Display Workshops (IDW), 1996.

    Google Scholar 

  24. H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” in Proc. SPIE 9011, 90111H, 2014.

    Google Scholar 

  25. Y. Kim, et al., “Accommodative response of integral imaging in near distance,” J. Disp. Technol. Vol. 8, no. 2, pp. 70–78, 2012.

    Article  Google Scholar 

  26. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express vol. 19, no. 2, pp. 704–716, 2011.

    Article  Google Scholar 

  27. G. Lippmann, “Epreuves reversibles Photographies integrals,” Comptes Rendus Academie des Sciences, vol. 146, pp. 446–451, 1908.

    Google Scholar 

  28. J.-H. Jung, K. Hong and B. Lee, “Effect of viewing region satisfying super multi-view Condition in Integral Imaging,” SID Symposium Digest of Technical Papers, vol. 43, pp. 883–886, 2012.

    Article  Google Scholar 

  29. H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID, vol. 22, no. 3, pp. 158–162, 2014.

    Article  Google Scholar 

  30. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express, vol. 18, no. 25, pp. 25573–25583, 2010.

    Article  Google Scholar 

  31. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. vol. 36, pp. 1598–1603, 1997.

    Article  Google Scholar 

  32. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. vol. 52, no. 4, pp. 546-560, 2013.

    Article  Google Scholar 

  33. J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. Vol. 28, no. 16, pp. 1421–1423, 2003.

    Article  Google Scholar 

  34. S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. vol. 42, no. 20, pp. 4186–4195, 2003.

    Article  Google Scholar 

  35. S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications” J. Inf. Disp., vol. 15, no. 1, pp. 37–46, 2014.

    Article  Google Scholar 

  36. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design”, in Proc. SPIE, 3012, pp.179-186, 1997.

    Google Scholar 

  37. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display”, Opt. Express, vol. 19, no. 5, pp. 4129–4139, 2011.

    Article  Google Scholar 

  38. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, Display. New York, NY, USA: Springer-Verlag, 2009.

    Google Scholar 

  39. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon., vol. 5, no. 4, pp. 456–535, 2013.

    Article  Google Scholar 

  40. T. Honda, Y. Kajiki, S. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3-D images,” in Three-Dimensional Television, Video and Display Technologies. Berlin, Germany: Springer-Verlag, pp. 461–487, 2002.

    Google Scholar 

  41. Y. Takaki, Y. Urano, and H. Nishio, “Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays,” Opt. Express, vol. 20, no. 24, pp. 27180-27197, 2012.

    Article  Google Scholar 

  42. Y. Takaki, “Development of super multi-view displays,” ITE Transactions on Media Technology and Applications, vol. 2, no. 1, pp. 8–14, 2014.

    Article  Google Scholar 

  43. Y. Kajiki, H. Yoshikawa and T. Honda: “Hologram-like video images by 45-view stereoscopic display”, in Proc. SPIE, 3012, pp.154-166, 1997.

    Google Scholar 

  44. T. Honda, D. Nagai and M. Shimomatsu: “Development of 3-D display system by a fan-like array of projection optics”, in Proc. SPIE, 4660, pp.191-199, 2001.

    Google Scholar 

  45. H. Nakanuma, H. Kamei, and Y. Takaki: “Natural 3D display with 128 directional images used for human-engineering evaluation”, in Proc. SPIE, 5664, pp.28-35, 2005.

    Google Scholar 

  46. K. Kikuta and Y. Takaki: “Development of SVGA resolution 128-directional display”, in Proc. SPIE, 6490, pp.64900U-1-8, 2007.

    Google Scholar 

  47. T. Kanebako and Y. Takaki: “Time-multiplexing display module for high-density directional display”, in Proc. SPIE, 6803, pp.68030P-1-8, 2008.

    Google Scholar 

  48. Y. Takaki and N. Nago: “Multi-projection of lenticular displays to construct a 256-view super multi-view display”, Opt. Express, vol. 18, no. 8, pp.8824-8835, 2010.

    Article  Google Scholar 

  49. T. Balogh, “The HoloVizio system,” in Proc. SPIE 6055, 12 pages, 2006.

    Google Scholar 

  50. J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Applied Physics Letters, vol. 12, no. 1, pp. 10-12, 1968.

    Article  Google Scholar 

  51. D. J. DeBitetto, “Holographic Panoramic Stereograms Synthesized from White Light Recordings,” Applied Optics, vol. 8, no. 8, pp. 1740-1741, 1969.

    Article  Google Scholar 

  52. M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Proc. SPIE, vol. 2176, pp. 73-84, 1994.

    Google Scholar 

  53. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Applied Optics, vol. 48, no. 34, pp. H48-H53, 2009.

    Article  Google Scholar 

  54. D. Brotherton-Ratcliffe, F. Vergnes, A. Rodin, and M. Grichine Holographic Printer. U.S. Patent 1999b; No. US7800803B2.

    Google Scholar 

  55. Zebra Imaging Inc. Company (2012) http://www.zebraimaging.com/.

  56. X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dyedoped liquid crystal,” J. Display Technol., vol. 10, pp. 438–443, 2014.

    Article  Google Scholar 

  57. S. Tay, M. Yamamoto, and N. Peyghambarian, “An updateable holographic 3-D display based on photorefractive polymers,” SID Symp. Dig. Tech. Pap. 39, pp. 356–357, 2008.

    Google Scholar 

  58. M. Lucente, Diffraction-specific fringe computation for electro-holography, Ph.D. dissertation, Cambridge, MA, USA, 1994.

    Google Scholar 

  59. T. Yatagai, “Three-dimensional displays using computer-generated holograms,” Optics Communications, vol. 12, no. 1, pp. 43-45, 1974.

    Article  Google Scholar 

  60. J. Mäkinen, From light fields to wavefields: Hologram generation from multiperspective images, Master’s thesis, Tampere University of Technology, Finland, 2017.

    Google Scholar 

  61. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J: John Wiley & Sons, 2007.

    Google Scholar 

  62. Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” in Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903, 2010.

    Google Scholar 

  63. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express vol. 23, no. 4, 3901-3913, 2015.

    Article  Google Scholar 

  64. Ives FE. 1903. Parallax stereogram and process of making same. US Patent No. 725,567.

    Google Scholar 

  65. D. Lanman, M. Hirsch, Y. Kim Y, R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. vol. 29, no. 6, 163: 10 pages, 2010.

    Article  Google Scholar 

  66. G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, “Tensor displays: compressive fight field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. vol. 31, 80: 11 pages, 2012.

    Article  Google Scholar 

  67. G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar, ”Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. vol. 30, 95: 11 pages, 2011.

    Article  Google Scholar 

  68. F-C. Huang, K. Chen, G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph., vol. 34, 60: 12 pages, 2015.

    Google Scholar 

  69. M. Hirsch, G. Wetzstein, R. Raskar, ”A Compressive Light Field Projection System,” ACM Trans. Graph., vol. 33, 4: 12 pages, 2014.

    Article  Google Scholar 

  70. J.H. Lee, J. Park, D. Nam, S.Y. Choi, D.S. Park, and C.Y. Kim, “Optimal projector configuration design for 300-Mpixels multi-projection 3D display,” Opt. Express vol. 21, no. 22, 26820–26835, 2013.

    Article  Google Scholar 

  71. E. Dubois, “The sampling and reconstruction of time-varying imagery with application in video systems,” in Proc. IEEE 73, 502–522, 1985.

    Article  Google Scholar 

  72. E. Dubois, “Video sampling and interpolation,” in The Essential Guide to Video Processing, J. Bovik, ed., Academic Press, 2009.

    Google Scholar 

  73. P.Q. Nguyen and D. Stehlé, “Low-dimensional lattice basis reduction revisited,” ACM Trans. Algorithms, vol. 5, no. 4, 46 pages, 2009.

    Article  MathSciNet  Google Scholar 

  74. F. Aurenhammer, “Voronoi diagrams – A survey of a fundamental geometric data structure,” ACM Computing Surveys vol. 23, pp. 245-405, 1991.

    Article  Google Scholar 

  75. E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University, 2011.

    Google Scholar 

  76. P. T. Kovács, K. Lackner, A. Barsi, A. Balázs, A. Boev, R. Bregović, and A. Gotchev, “Measurement of perceived spatial resolution in 3D light-field displays,” in Proc. IEEE Int. Conf. Image Processing, Paris, France, pp. 768–772, Oct. 2014.

    Google Scholar 

  77. P. T. Kovács, R. Bregović, A. Boev, A. Barsi, and A. Gotchev, “Quantifying spatial and angular resolution of 3D light-field displays,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1213-1222, Oct. 2017.

    Article  Google Scholar 

  78. Z. Lin and H.-Y. Shum, “A geometric analysis of light field rendering,” Int’l J. of Computer Vision, vol. 58, no. 2, pp. 121–138, 2004.

    Article  Google Scholar 

  79. R. Ng, “Fourier Slice Photography,” in Proc. ACM SIGGRAPH, pp. 735–744, July 2005.

    Google Scholar 

  80. I. Tosic and K. Berkner, “Light Field Scale-Depth Space Transform for Dense Depth Estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 441–448, June 2014.

    Google Scholar 

  81. K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung, “Efficient 3D Object Segmentation from Densely Sampled Light Fields with Applications to 3D Reconstruction,” ACM Trans. on Graphics, vol. 35, no. 3, 2016.

    Article  Google Scholar 

  82. M. Tanimoto, “Overview of FTV (free-viewpoint television),” in Proc. IEEE Conf. Multimedia and Expo (ICME 2009), pp. 1552–1553, June 2009.

    Google Scholar 

  83. J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-Corrected Light Field Rendering for Creating a Holographic Stereogram,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–13, 2012.

    Google Scholar 

  84. H. Shum, S. Chan, and S. Kang, Image-Based Rendering. Springer- Verlag, 2007.

    Google Scholar 

  85. S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Light Field Reconstruction Using Shearlet Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no.1, pp. 133-147, Jan. 2018.

    Google Scholar 

  86. C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured lumigraph rendering,” in Proc. 28th Conf. on Computer Graphics and Interactive Techniques, pp. 425-432, 2001.

    Google Scholar 

  87. S. Fuhrmann, F. Langguth and M. Goesele “MVE – A Multi-View Reconstruction Environment,” in Proc EUROGRAPHICS Workshops on Graphics and Cultural Heritage, 2014.

    Google Scholar 

  88. S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

    Google Scholar 

  89. H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, Feb. 2008.

    Google Scholar 

  90. S. N. Sinha, D. Scharstein and R. Szeliski, “Efficient High- Resolution Stereo Matching Using Local Plane Sweeps,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1582–1589, June 2014.

    Google Scholar 

  91. G. Zhang, J. Jia, T. Wong, and H. Bao, “Consistent Depth Maps Recovery from a Video Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–988, June 2009.

    Google Scholar 

  92. C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proc. Stereoscopic Displays Appl, pp. 93-104, 2002.

    Google Scholar 

  93. J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic Layer- Based Modeling for Image Based Rendering,” IEEE Trans. Image Processing, vol. 22, no. 9, pp. 3405–3419, Sept. 2013.

    Google Scholar 

  94. B. Olshausen and D. Field “Emergence of simple-cell receptive field properties by learning a sparse code for natural images”, Nature vol. 381, pp. 607-609, 1996.

    Google Scholar 

  95. D. Donoho, “Sparse Components Analysis and Optimal Atomic Decomposition”, Technical Report, Statistics, Stanford, 1998.

    Google Scholar 

  96. E. J. Candes, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford University, 1999.

    Google Scholar 

  97. E. J. Candes and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities,” Comm. Pure Appl. Math., vol. 57, no. 2, pp. 219–266, 2004.

    Article  Google Scholar 

  98. G. Kutyniok, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media, 2012.

    Google Scholar 

  99. M. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec 2005.

    Article  Google Scholar 

  100. G.Easley, D.Labate, and W.-Q.Lim, “Optimally sparse image representations using shearlets,” in Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC ’06), pp. 974–978, Oct 2006.

    Google Scholar 

  101. G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are optimally sparse,” J. of Approximation Theory, vol. 163, no. 11, pp. 1564 – 1589, 2011.

    Article  MathSciNet  Google Scholar 

  102. J.-L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho, “Morphological Component Analysis,” in Proc. SPIE 5914 Wavelets XI, 59140Q, May 2005.

    Google Scholar 

  103. J. Fadili, J.-L. Starck, M. Elad, and D. Donoho, “Mcalab: Reproducible Research in Signal and Image Decomposition and Inpainting,” IEEE Computing in Science & Engineering, vol. 12, no. 1, pp. 44–63, 2010.

    Google Scholar 

  104. L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain,” ACM Trans. on Graphics, vol. 34, no. 1, 2014.

    Article  Google Scholar 

  105. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 1-11, 2013.

    Article  Google Scholar 

  106. Z. Li, Image patch modeling in a light field. PhD thesis, EECS Department, University of California, Berkeley, May 2014.

    Google Scholar 

  107. D. C. Schedl, C. Birklbauer, and O. Bimber, “Directional Super-Resolution by Means of Coded Sampling and Guided Upsampling,” in Proc. IEEE Conf. Computational Photography (ICCP), pp. 1–10, 2015.

    Google Scholar 

  108. O. Johannsen, A. Sulc, and B. Goldluecke, "What Sparse Light Field Coding Reveals about Scene Structure," in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 3262-3270, 2016.

    Google Scholar 

  109. N.K. Kalantari, T.-C. Wangand and R. Ramamoorthi, “Learning-Based View Synthesis for Light Field Cameras,” ACM Trans. on Graphics, vol. 35, no. 6, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Gotchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bregovic, R., Sahin, E., Vagharshakyan, S., Gotchev, A. (2019). Signal Processing Methods for Light Field Displays. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics