Advertisement

Abstract

Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Thus, different from previous studies, our approach enables us to deal with various kinds of prediction tasks based on the given specification. A prototype implementing our approach has been developed and experiments using a real-life event log have been conducted.

Keywords

Predictive business process monitoring Prediction task specification Automatic prediction model creation Multi-perspective prediction 

Notes

Acknowledgement

This research has been supported by the Euregio IPN12 “KAOS: Knowledge-Aware Operational Support” project, which is funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects. The author thanks Tri Kurniawan Wijaya for various suggestions related to this work, and Yasmin Khairina for the implementation of some prototype components.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining. Data Science in Action, 2nd edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  3. 3.
    Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: the 32nd ACM SIGACT SIGMOD SIGAI Symposium on Principles of Database Systems (PODS), pp. 163–174 (2013)Google Scholar
  4. 4.
    Bagheri Hariri, B., Calvanese, D., Montali, M., Santoso, A., Solomakhin, D.: Verification of semantically-enhanced artifact systems. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 600–607. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45005-1_51CrossRefGoogle Scholar
  5. 5.
    Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)CrossRefGoogle Scholar
  6. 6.
    Calvanese, D., Ceylan, İİ., Montali, M., Santoso, A.: Verification of context-sensitive knowledge and action bases. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 514–528. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_36CrossRefGoogle Scholar
  7. 7.
    Calvanese, D., Montali, M., Santoso, A.: Verification of generalized inconsistency-aware knowledge and action bases (extended version). CoRR Technical report arXiv:1504.08108, arXiv.org e-Print archive (2015). http://arxiv.org/abs/1504.08108
  8. 8.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRefGoogle Scholar
  9. 9.
    Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)Google Scholar
  10. 10.
    Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_15CrossRefGoogle Scholar
  11. 11.
    Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)CrossRefGoogle Scholar
  12. 12.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, New York (2001).  https://doi.org/10.1007/978-0-387-21606-5CrossRefGoogle Scholar
  13. 13.
    IEEE Comp. Intelligence Society: IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams. IEEE Std 1849–2016 (2016)Google Scholar
  14. 14.
    Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23063-4_21CrossRefGoogle Scholar
  15. 15.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_31CrossRefGoogle Scholar
  16. 16.
    Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_8CrossRefGoogle Scholar
  17. 17.
    Metzger, A., Leitner, P., Ivanović, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S., Pohl, K.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)CrossRefGoogle Scholar
  18. 18.
    Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Annual SRII Global Conference (2012)Google Scholar
  19. 19.
    Object Management Group: Decision Model and Notation (DMN) 1.0 (2015). http://www.omg.org/spec/DMN/1.0/
  20. 20.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_18CrossRefGoogle Scholar
  21. 21.
    Pika, A., van der Aalst, W., Wynn, M., Fidge, C., ter Hofstede, A.: Evaluating and predicting overall process risk using event logs. Inf. Sci. 352–353, 98–120 (2016)CrossRefGoogle Scholar
  22. 22.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36285-9_22CrossRefGoogle Scholar
  23. 23.
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN) (2014)Google Scholar
  24. 24.
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and Activity Sequence Prediction of Business Process Instances. CoRR abs/1602.07566 (2016)Google Scholar
  25. 25.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45005-1_27CrossRefGoogle Scholar
  26. 26.
    Santoso, A.: Specification-driven multi-perspective predictive business process monitoring (extended version). CoRR Technical Report arXiv:1804.00617, arXiv.org e-Print archive (2018). https://arxiv.org/abs/1804.00617
  27. 27.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_4CrossRefGoogle Scholar
  28. 28.
    Smullyan, R.M.: First Order Logic. Springer, Heidelberg (1968).  https://doi.org/10.1007/978-3-642-86718-7CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_30CrossRefGoogle Scholar
  31. 31.
    Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Complex symbolic sequence clustering and multiple classifiers for predictive process monitoring. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 218–229. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42887-1_18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations