Measuring Performance of Adaptive Supply Chains

  • Dorota Leończuk
  • Urszula Ryciuk
  • Maciej SzymczakEmail author
  • Joanicjusz Nazarko
Part of the EcoProduction book series (ECOPROD)


In the wake of the intensification of competitive struggle that we can call hyper-competition and in the face of temporary, transient and often unsustainable competitive advantage supply chains have to master their processes in many dimensions at the same time. Excellence is achieved through a shared vision of development and cooperation with up and down-tier supply chain members especially by continuous assessment and improvement the effectiveness and efficiency of the supply chain processes. Typical determinants of the supply chain performance is the triad: level of customer service—time—costs. However, intensive changes taking place in the supply chains surroundings enforce the inclusion of new criteria in supply chain performance measurement. In the chapter the problem of supply chain performance measurement with reference to the concept of adaptive supply chains was considered. The study was based on quantitative research conducted among Polish companies employing 50 or more employees from four sectors of economy: automotive, food, furniture as well as consumer electronics and household appliances. 200 computer assisted telephone interviews (CATI) were held. According to the conducted research the scale for measuring the supply chain performance should take into account four factors, namely responsiveness, versatility, velocity, and visibility (3V + R formula).


Supply chain performance measurement Adaptive supply chain 3V formula Smart supply chain Exploratory factor analysis (EFA) Confirmatory factor analysis (CFA) 



The study was funded by the National Science Centre, Poland (grant no. 2014/13/B/HS4/03293).


  1. 1.
    Ahmed, A. M. (2002). Virtual Integrated Performance Management. International Journal of Quality and Reliability Management, 19(4), 414–441.CrossRefGoogle Scholar
  2. 2.
    Arif-Uz-Zaman, K., & Ahsan, A. M. M. N. (2014). Lean supply chain performance measurement. International Journal of Productivity and Performance Management, 63(5), 588–612.CrossRefGoogle Scholar
  3. 3.
    Ayers, J. B. (2004). Supply chain project management. A structured collaborative and measurable approach. Boca Raton: St. Lucie Press.Google Scholar
  4. 4.
    Barratt, M., & Oke, A. (2007). Antecedents of supply chain visibility in retail supply chains: A resource-based theory perspective. Journal of Operations Management, 25(6), 1217–1233.CrossRefGoogle Scholar
  5. 5.
    Basu, R., & Wright, J. N. (2008). Total supply chain management. United Kingdom: Elsevier.CrossRefGoogle Scholar
  6. 6.
    Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275–292.CrossRefGoogle Scholar
  7. 7.
    Bititci, U. S., Carrie, A. S., & McDevitt, L. (1997). Integrated performance measurement systems: A development guide. International Journal of Operations and Production Management, 17(5), 522–534.CrossRefGoogle Scholar
  8. 8.
    Boin, A., Kelle, P., & Whybark, D. (2010). Resilient supply chains for extreme situations: Outlining a new field of study. International Journal of Production Economics, 126(1), 1–6.CrossRefGoogle Scholar
  9. 9.
    Bradley, N. (2013). Marketing research: Tools and techniques. Oxford: Oxford University Press.Google Scholar
  10. 10.
    Brown, T.A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: The Guilford Press.Google Scholar
  11. 11.
    Butner, K. (2010). The smarter supply chain of the future. Strategy & Leadership, 38(1), 22–31.CrossRefGoogle Scholar
  12. 12.
    Chae, B. (2009). Developing key performance indicators for supply chain: An industry perspective. Supply Chain Management: An International Journal, 14(6), 422–428.CrossRefGoogle Scholar
  13. 13.
    Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The International Journal of Logistics Management, 15(2), 1–14.CrossRefGoogle Scholar
  14. 14.
    Clark, C. (2007). Getting back to basics: Top five tips for accelerating supply chain velocity. Supply & Demand Chain Executive, 8(4), 26.Google Scholar
  15. 15.
    D’Aveni, R. (1995). Hyper-competitive rivalries: Competing in highly dynamic environments. New York: FreePress.Google Scholar
  16. 16.
    De Toni, A., & Tonchia, S. (2001). Performance measurement systems. Models, characteristics and measures. International Journal of Operations and Production Management, 21(1–2), 46–70.CrossRefGoogle Scholar
  17. 17.
    Field, A. (2009). Discovering statistics using SPSS. London: SAGE Publications.Google Scholar
  18. 18.
    Fischer, C. (2013). Trust and communication in European agri-food chains. Supply Chain Management: An International Journal, 18(2), 208–218.CrossRefGoogle Scholar
  19. 19.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.CrossRefGoogle Scholar
  20. 20.
    Giovannoni, E., & Maraghini, M. P. (2013). The challenges of integrated performance measurement systems. Integrating mechanisms for integrated measures. Accounting, Auditing and Accountability Journal, 26(6), 978–1008.CrossRefGoogle Scholar
  21. 21.
    Golrizgashti, S. (2014). Supply chain value creation methodology under BSC approach. Journal of Industrial Engineering International, 10(67), 1–15.Google Scholar
  22. 22.
    Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347.CrossRefGoogle Scholar
  23. 23.
    Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations and Production Management, 21(1–2), 71–87.CrossRefGoogle Scholar
  24. 24.
    Heinemann, G. (2017). Online-Handel der Zukunft. Der neue Online-Handel (pp. 1–33). Wiesbaden: Springer Gabler.CrossRefGoogle Scholar
  25. 25.
    Hines, T. (2013). Supply chain strategies: Demand driven and customer focused. New York: Routledge.Google Scholar
  26. 26.
    Holcomb, M. C., Ponomarov, S. Y., & Manrodt, K. B. (2011). The relationship of supply chain visibility to firm performance. Supply Chain Forum: An International Journal, 12(2), 32–45.CrossRefGoogle Scholar
  27. 27.
    Holmberg, S. (2000). A systems perspective on supply chain measurements. International Journal of Physical Distribution and Logistics Management, 30(10), 847868.CrossRefGoogle Scholar
  28. 28.
    Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.Google Scholar
  29. 29.
    Hudnurkar, M., & Rathod, U. (2012). Collaborative supply chain: insights from simulation. International Journal of System Assurance Engineering and Management, 3(2), 122–144.CrossRefGoogle Scholar
  30. 30.
    Ivanov, D., Sokolov, B., & Kaeschel, J. (2010). A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. European Journal of Operational Research, 200(2), 409–420.CrossRefGoogle Scholar
  31. 31.
    Iyer, A., Seshadri, S., & Vasher, R. (2009). Toyota supply chain management: A strategic approach to Toyota’s renowned system. New York: McGraw-Hill Education.Google Scholar
  32. 32.
    Janssen, S., Moeller, K., & Schlaefke, M. (2011). Using performance measures in innovation control. Journal of Management Control, 22(1), 107–128.CrossRefGoogle Scholar
  33. 33.
    Johansson, S., & Melin, J. (2008). Supply chain visibility. The value of information. A benchmark study of the Swedish industry. Stockholm: KTH Royal Institute of Technology.Google Scholar
  34. 34.
    Johnson, N., Elliott, D., & Drake, P. (2013). Exploring the role of social capital in facilitating supply chain resilience. Supply Chain Management: An International Journal, 18(3), 324–336.CrossRefGoogle Scholar
  35. 35.
    Jung, S. (2013). Exploratory factor analysis with small sample sizes: a comparison of three approaches. Behavioural Processes, 97, 90–95.CrossRefGoogle Scholar
  36. 36.
    Jűttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: An empirical study. Supply Chain Management: An International Journal, 16(4), 246–259.CrossRefGoogle Scholar
  37. 37.
    Kalakota, R., Robinson, M., & Gundepudi, P. (2003). Mobile applications for adaptive supply chain: A landscape analysis. In E. Lim & K. Siau (Eds.), Advances in mobile commerce technologies, Idea Group Inc (pp. 298–312). USA: Hershey.CrossRefGoogle Scholar
  38. 38.
    Kang, Y.-S., Park, I.-H., & Youm, S. (2016). Performance prediction of a MongoDB-based traceability system in smart factory supply chains. Sensors, 16(12).CrossRefGoogle Scholar
  39. 39.
    Kersten, W., Blecker, T., & Meyer, M. (Eds.). (2009). Supply chain performance management. Berlin: Erich Schmidt Verlag.Google Scholar
  40. 40.
    Kohlberger, R., Gerschberger, M., & Engelhardt-Nowitzki, C. (2011). Variety in supply networks—Definitions and influencing parameters” In: Fang, C. H. (Ed.), Proceedings of the 6th International Congress on Logistics and SCM systems, Kaohsiung, Taiwan (pp. 191–203), March 07–09, 2011.Google Scholar
  41. 41.
    Lee, H. L. (2004). The triple-A supply chain. Harvard Business Review, 82(10), 102–112.Google Scholar
  42. 42.
    Lee, Y., & Rim, S-Ch. (2016). Quantitative model for supply chain visibility: process capability perspective. Mathematical Problems in Engineering, 2016, 1–11.Google Scholar
  43. 43.
    Lockamy, A., & McCormack, K. (2004). The development of a supply chain management process maturity model using the concepts of business process orientation. Supply Chain Management: An International Journal, 9(4), 272–278.CrossRefGoogle Scholar
  44. 44.
    Markman, G. D., & Phan, P. H. (2011). The competitive dynamics of entrepreneurial market entry. Cheltenham: Edward Elgar Publishing Limited.CrossRefGoogle Scholar
  45. 45.
    McGrath, R. M. (2013). Transient advantage. Harvard Business Review 64–70.Google Scholar
  46. 46.
    Momeni, E., Tavana, M., Mirzagoltabar, H., & Mirhedayatiane, S. M. (2014). A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. Journal of Intelligent and Fuzzy Systems, 27(2), 793–804.Google Scholar
  47. 47.
    Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times.Google Scholar
  48. 48.
    Nielsen, N. P. H., & Holmström, J. (1995). Design for speed: A supply chain perspective on design for manufacturability. Computer Integrated Manufacturing Systems, 8(3), 223–228.CrossRefGoogle Scholar
  49. 49.
    Noori, H., & Lee, W. B. (2002). Factory-on-demand and smart supply chains: The next challenge. International Journal of Manufacturing Technology and Management, 4, 372–383.CrossRefGoogle Scholar
  50. 50.
    Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.Google Scholar
  51. 51.
    Nutt, B. (2004). Infrastructure resources: Forging alignments between supply and demand. Facilities, 22(13/14), 335–343.CrossRefGoogle Scholar
  52. 52.
    Olugu, E. U., & Wong, K. Y. (2009). Supply chain performance evaluation: Trends and challenges. American Journal of Engineering and Applied Sciences, 2(1), 202–211.CrossRefGoogle Scholar
  53. 53.
    Poirier, Ch C. (2002). Achieving supply chain connectivity. Supply Chain Management Review, 6(6), 16–22.Google Scholar
  54. 54.
    Qrunfleh, S., & Tarafdar, M. (2014). Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics, 147, 340–350.CrossRefGoogle Scholar
  55. 55.
    Rossoni, L., Engelbert, R., & Bellegard, N. L. (2016). Normal science and its tools: Reviewing the effects of factor analysis in management. Revista de Administração (RAUSP), 51(2), 198–211.CrossRefGoogle Scholar
  56. 56.
    Ruhi, U., & Turel, O. (2005). Driving visibility, velocity and versatility: The role of mobile technologies in supply chain management. Journal of Internet Commerce, 4(3), 95–117.CrossRefGoogle Scholar
  57. 57.
    Ryciuk, U. (2016). Zaufanie międzyorganizacyjne w łańcuchach dostaw w budownictwie. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar
  58. 58.
    SAP. (2002). Adaptive supply chain networks. Accessed January 18, 2018.
  59. 59.
    Scholten, K., & Schilder, S. (2015). The role of collaboration in supply chain resilience. Supply Chain Management: An International Journal, 20(4), 471–484.CrossRefGoogle Scholar
  60. 60.
    Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2000). Designing and managing the supply chain. Concepts, strategies, and case studies. Boston: McGraw-Hill/Irwin.Google Scholar
  61. 61.
    Swaminathan, J. M., & Tayur, S. R. (2003). Models for supply chains in e-business. Management Science, 49(10), 1387–1406.CrossRefGoogle Scholar
  62. 62.
    Szymczak, M. (2015). Ewolucja łańcuchów dostaw. Poznań: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.Google Scholar
  63. 63.
    Szymczak, M. (2014). Smart convenience in food supply chains. In: The International Forum on Agri-Food Logistics “Agri-Food Logistics as a Chance of Efficient Consumer Response in the Agri-Food Sector, Poznań (pp. 178–180).Google Scholar
  64. 64.
    Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson.Google Scholar
  65. 65.
    Tarasewicz, R. (2014). Jak mierzyć efektywność łańcuchów dostaw? Szkoła Główna Handlowa – Oficyna Wydawnicza, Warszawa.Google Scholar
  66. 66.
    Tjahjono, B., Esplugues, C., Ares, E., & Pelazez, G. (2017). What does Industry 4.0 mean to supply chain? Procedia Manufacturing, 13, 1175–1182.CrossRefGoogle Scholar
  67. 67.
    Tsironis, L. K., & Matthopoulos, P. P. (2015). Towards the identification of important strategic priorities of the supply chain network. Business Process Management Journal, 21(6), 1279–1298.CrossRefGoogle Scholar
  68. 68.
    Upton, J. (2017). Setting sights on the smart supply chain. Pharmaceutical Executive, 37(3).Google Scholar
  69. 69.
    van Hoek, R. I. (1998). Measuring the unmeasurable—Measuring and improving performance in the supply chain. Supply Chain Management: An International Journal, 3(4), 187–192.CrossRefGoogle Scholar
  70. 70.
    Whitten, G. D., Green, K. W., & Zelbst, P. J. (2012). Triple-A supply chain performance. International Journal of Operations & Production Management, 32(1), 28–48.CrossRefGoogle Scholar
  71. 71.
    Wilhjelm, R. (2013). Revisiting the 3Vs of supply chain: Visibility, variation and velocity.–10-17.php?cid=7489. Accessed January 18, 2018.
  72. 72.
    Williams, B. D., Roh, J., Tokar, T., & Swink, M. (2013). Leveraging supply chain visibility for responsiveness: The moderating role of internal integration. Journal of Operations Management, 31(7–8), 543–554.CrossRefGoogle Scholar
  73. 73.
    Wipulanusat, W., Panuwatwanich, K., & Stewart, R. A. (2017). Exploring leadership styles for innovation: An exploratory factor analysis. Engineering Management in Production and Services, 9(1), 7–17.CrossRefGoogle Scholar
  74. 74.
    Wu, L., Yue, X., Jin, A., & Yen, D. C. (2016). Smart Supply Chain Management: A review and implications for future research. The International Journal of Logistics Management, 27, 395–417.CrossRefGoogle Scholar
  75. 75.
    Zhang, A. N., Goh, M., & Meng, F. (2011). Conceptual modelling for supply chain inventory visibility. International Journal of Production Economics, 133(2), 578–585.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Dorota Leończuk
    • 1
  • Urszula Ryciuk
    • 1
  • Maciej Szymczak
    • 2
    Email author
  • Joanicjusz Nazarko
    • 1
  1. 1.Faculty of Engineering Management, International Chinese and Central-Eastern European Institute of Logistics and Service ScienceBialystok University of TechnologyBialystokPoland
  2. 2.Faculty of International Business and Economics, Department of International LogisticsPoznań University of Economics and BusinessPoznańPoland

Personalised recommendations