Skip to main content

Conclusions and Recommendations for the Future

  • Chapter
  • First Online:
  • 471 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, the findings throughout this thesis are collated, drawing comparisons and contrasts between not only the materials, but the methods and analysis techniques that were used.

Scientists will eventually stop flailing around with solar power and focus their efforts on harnessing the only truly unlimited source of energy on the planet: stupidity. I predict that in the future, scientists will learn how to convert stupidity into clean fuel. Energy companies will place huge hamster wheels outside of convenience stores and offer free lottery tickets to people who spend five minutes running inside the wheels, which will be connected to power generators.

Scott Adams, ‘Dilbert’ Cartoonist, 2008

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Either the calculated or literature value.

  2. 2.

    Discussed in Sect. 6.7.3.

  3. 3.

    See Sect. 1.2.2.

  4. 4.

    Where these interactions are forbidden because of the unoccupied Sn 5s orbitals.

  5. 5.

    Antimony in CuSbS2 is more prevalent than bismuth in Cu3BiS3.

  6. 6.

    As was initially shown in Figs. 3.10, 4.9, and 5.13, and rectified in Sect. 6.7.3.

  7. 7.

    Sn 5s in CZTS.

  8. 8.

    For example with Cu+ and S2−.

  9. 9.

    Or those with strong lone-pair presence.

  10. 10.

    As discussed in Sects. 1.3.3 and 1.4.

  11. 11.

    See Figs. 1.1 and 1.2.

  12. 12.

    See Figs. 1.15 and 1.16.

  13. 13.

    See Sect. 6.2.4.

  14. 14.

    See Sect. 6.9.3

References

  1. Shirley DA. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5(12):4709–14.

    Google Scholar 

  2. Shirley DA, Fadley CS. X-ray photoelectron spectroscopy in North America—the early years. J Electron Spectros Relat Phenom. 2004;137–140:43–58.

    Google Scholar 

  3. Ley L, Kowalczyk S, Pollak R, Shirley DA. X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands. Phys Rev Lett. 1972;29(16):1088–92.

    CAS  Google Scholar 

  4. Ley L, Pollak RA, McFeely FR, Kowalczyk SP, Shirley DA. Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. Phys Rev B. 1974;9(2):600–21.

    CAS  Google Scholar 

  5. Pollak RA, Ley L, Kowalczyk S, Shirley DA, Joannopoulos JD, Chadi DJ, Cohen ML. X-ray photoemission valence-band spectra and theoretical valence-band densities of states for Ge, GaAs, and ZnSe. Phys Rev Lett. 1972;29(16):1103–5.

    CAS  Google Scholar 

  6. Fadley CS, Shirley DA. Electronic densities of states from x-ray photoelectron spectroscopy. J Res Natl Bur Stand Sect A Phys Chem. 1970;74A(4):543.

    Google Scholar 

  7. Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP. Precise determination of the valence-band edge in x-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett. 1980;44(24):1620–3.

    CAS  Google Scholar 

  8. Hoye RLZ, Schulz P, Schelhas LT, Holder AM, Stone KH, Perkins JD, Vigil-Fowler D, Siol S, Scanlon DO, Zakutayev A, Walsh A, Smith IC, Melot BC, Kurchin RC, Wang Y, Shi J, Marques FC, Berry JJ, Tumas W, Lany S, Stevanović V, Toney MF, Buonassisi T. Perovskite-inspired photovoltaic materials: toward best practices in materials characterization and calculations. Chem Mater. 2017;29(5):1964–88.

    CAS  Google Scholar 

  9. Chambers SA, Droubay T, Kaspar TC, Gutowski M. Experimental determination of valence band maxima for SrTiO3, TiO2, and SrO and the associated valence band offsets with Si(001). J Vac Sci Technol B Microelectron Nanom Struct. 2004;22(4):2205.

    CAS  Google Scholar 

  10. Zeng Y, Li H, Qu B, Xiang B, Wang L, Zhang Q, Li Q, Wang T, Wang Y. Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. CrystEngComm. 2012;14(2):550–4.

    CAS  Google Scholar 

  11. Gerein NJ, Haber JA. One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem Mater. 2006;18(26):6297–302.

    CAS  Google Scholar 

  12. Estrella V, Nair MTS, Nair PK. Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films. Semicond Sci Technol. 2003;18(2):190–4.

    CAS  Google Scholar 

  13. Yakushev MV, Maiello P, Raadik T, Shaw MJ, Edwards PR, Krustok J, Mudryi AV, Forbes I, Martin RW. Electronic and structural characterisation of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics. Thin Solid Films. 2014;562:195–9.

    CAS  Google Scholar 

  14. Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater. 2013;25(24):4908–16.

    CAS  Google Scholar 

  15. Burton LA, Walsh A. Band alignment in SnS thin-film solar cells: possible origin of the low conversion efficiency. Appl Phys Lett. 2013;102(13):132111.

    Google Scholar 

  16. Sun K, Yan C, Liu F, Huang J, Zhou F, Stride JA, Green M, Hao X. Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv Energy Mater. 2016;6(12):1600046.

    Google Scholar 

  17. Delbos S. Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics. 2012;3:35004.

    CAS  Google Scholar 

  18. Abermann S. Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol Energy. 2013;94:37–70.

    CAS  Google Scholar 

  19. Suryawanshi MP, Agawane GL, Bhosale SM, Shin SW, Patil PS, Kim JH, Moholkar AV. CZTS based thin film solar cells: a status review. Mater Technol. 2013;28(1–2):98–109.

    CAS  Google Scholar 

  20. Bourdais S, Choné C, Delatouche B, Jacob A, Larramona G, Moisan C, Lafond A, Donatini F, Rey G, Siebentritt S, Walsh A, Dennler G. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv Energy Mater. 2016;6(12):1502276.

    Google Scholar 

  21. Song X, Ji X, Li M, Lin W, Luo X, Zhang H. A review on development prospect of CZTS based thin film solar cells. Int J Photoenergy. 2014;2014:1–11.

    Google Scholar 

  22. Ji S, Ye C. Cu2ZnSnS4 as a new solar cell material: the history and the future. Rev Adv Sci Eng. 2012;1(1):42–58.

    Google Scholar 

  23. Wang H. Progress in thin film solar cells based on Cu2ZnSnS4. Int J Photoenergy. 2011;2011:1–10.

    Google Scholar 

  24. Altamura G, Vidal J. Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem Mater. 2016;28(11):3540–63.

    CAS  Google Scholar 

  25. Su C-Y, Yen Chiu C, Ting J-M. Cu2ZnSnS4 absorption layers with controlled phase purity. Sci Rep. 2015;5:9291.

    CAS  Google Scholar 

  26. Klein A. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J Phys: Condens Matter. 2015;27(13):134201.

    Google Scholar 

  27. Nishimura T, Hirai Y, Kurokawa Y, Yamada A. Control of valence band offset at CdS/Cu(In,Ga)Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu(In,Ga)Se2 solar cells CdS side Mo side Se flux CdS side. Jpn J Appl Phys. 2015;54:08KC08.

    Google Scholar 

  28. Morkel M, Weinhardt L, Lohmüller B, Heske C, Umbach E, Riedl W, Zweigart S, Karg F. Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction. Appl Phys Lett. 2001;79(27):4482–4.

    CAS  Google Scholar 

  29. Pookpanratana S, Repins I, Bär M, Weinhardt L, Zhang Y, Félix R, Blum M, Yang W, Heske C, Bar M, Felix R. CdS/Cu(In,Ga)Se2 interface formation in high-efficiency thin film solar cells. Appl Phys Lett. 2010;97(7):74101.

    Google Scholar 

  30. Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM, Powalla M. Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys Status Solid Rapid Res Lett. 2015;9(1):28–31.

    CAS  Google Scholar 

  31. Wallin E, Malm U, Jarmar T, Edoff OLM, Stolt L. World-record Cu(In,Ga)Se2-based thin-film sub-module with 17.4% efficiency. Prog Photovoltaics Res Appl. 2012;20(7):851–4.

    CAS  Google Scholar 

  32. Wei SH, Zunger A. Calculated natural band offsets of all II-VI and III-V semiconductors: chemical trends and the role of cation D orbitals. Appl Phys Lett. 1998;72(16):2011–3.

    CAS  Google Scholar 

  33. King PDC, Veal TD, Jefferson PH, Hatfield SA, Piper LFJ, McConville CF, Fuchs F, Furthmüller J, Bechstedt F, Lu H, Schaff WJ. Determination of the branch-point energy of InN: chemical trends in common-cation and common-anion semiconductors. Phys Rev B. 2008;77(4):45316.

    Google Scholar 

  34. Kilday DG, Margaritondo G, Ciszek TF, Deb SK, Wei S-H, Zunger A. Common-anion rule and its limits: photoemission studies of CuInxGa1–xSe2-Ge and CuxAg1–xInSe2-Ge interfaces. Phys Rev B. 1987;36(17):9388–91.

    CAS  Google Scholar 

  35. Li Y-H, Walsh A, Chen S, Yin W-J, Yang J-H, Li J, Da Silva JLF, Gong XG, Wei S-H. Revised Ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl Phys Lett. 2009;94(21):212109.

    Google Scholar 

  36. Maeda T, Wada T. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds. Phys Status Solid. 2009;6(5):1312–6.

    CAS  Google Scholar 

  37. Chen X-D, Chen L, Sun Q-Q, Zhou P, Zhang DW. Hybrid density functional theory study of Cu(In1–xGax)Se2 band structure for solar cell application. AIP Adv. 2014;4(8):87118.

    Google Scholar 

  38. Walsh A, Payne DJ, Egdell RG, Watson GW. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem Soc Rev. 2011;40(9):4455–63.

    CAS  Google Scholar 

  39. Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Mehta BR. A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation. Sol Energy Mater Sol Cells. 2016;157:820–30.

    CAS  Google Scholar 

  40. Suryawanshi MP, Shin SW, Ghorpade UV, Gurav KV, Hong CW, Agawane GL, Vanalakar SA, Moon JH, Yun JH, Patil PS, Kim JH, Moholkar AV. Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence. Electrochim Acta. 2014;150:136–45.

    CAS  Google Scholar 

  41. Chen S, Wang L. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater. 2012;24(18):3659–66.

    CAS  Google Scholar 

  42. Ji S, Shi T, Qiu X, Zhang J, Xu G, Chen C, Jiang Z, Ye C. A route to phase controllable Cu2ZnSn(S1–xSex)4 nanocrystals with tunable energy bands. Sci Rep. 2013;3:2733.

    Google Scholar 

  43. Huang S, Luo W, Zou Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J Phys D Appl Phys. 2013;46(23):235108.

    Google Scholar 

  44. Zhang Y, Yuan X, Sun X, Shih B-C, Zhang P, Zhang W. Comparative study of structural and electronic properties of Cu-based multinary semiconductors. Phys Rev B. 2011;84(7):75127.

    Google Scholar 

  45. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells. 2011;95(6):1421–36.

    CAS  Google Scholar 

  46. Zhao H, Persson C. Optical properties of Cu(In, Ga)Se2 and Cu2ZnSn(S, Se)4. Thin Solid Films. 2011;519(21):7508–12.

    CAS  Google Scholar 

  47. Xiao Z-Y, Li Y-F, Yao B, Deng R, Ding Z, Wu T, Yang G, Li C-R, Dong Z-Y, Liu L, Zhang L, Zhao H-F. Bandgap engineering of Cu2CdXZn1–xSnS4 alloy for photovoltaic applications: a complementary experimental and first-principles study. J Appl Phys. 2013;114(18):183506.

    Google Scholar 

  48. Wei S-H, Zunger A. Role of metal D states in II-VI semiconductors. Phys Rev B. 1988;37(15):8958–81.

    CAS  Google Scholar 

  49. Wei S-H, Zunger A. Role of D orbitals in valence-band offsets of common-anion semiconductors. Phys Rev Lett. 1987;59(1):144–7.

    CAS  Google Scholar 

  50. Pfisterer F. Photovoltaic cells. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; pp 35–154.

    Google Scholar 

  51. Barkhouse DAR, Haight R, Sakai N, Hiroi H, Sugimoto H, Mitzi DB. Cd-free buffer layer materials on Cu2ZnSn(SxSe1–x)4: band alignments with ZnO, ZnS, and In2S3. Appl Phys Lett. 2012;100(19):193904.

    Google Scholar 

  52. Kim K, Larina L, Yun JH, Yoon KH, Kwon H, Ahn BT. Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives. Phys Chem Chem Phys. 2013;15(23):9239.

    CAS  Google Scholar 

  53. Heske C, Groh U, Fuchs O, Umbach E, Franco N, Bostedt C, Terminello LJ, Perera RCC, Hallmeier KH, Preobrajenski A, Szargan R, Zweigart S, Riedl W, Karg F. X-ray emission spectroscopy of Cu(In,Ga)(S,Se)2-based thin film solar cells: electronic structure, surface oxidation, and buried interfaces. Phys Status Solid A-Appl Res. 2001;187(1):13–24.

    CAS  Google Scholar 

  54. Barreau N, Marsillac S, Bernède JC, Assmann L. Evolution of the band structure of β-In2S3–3xO3x buffer layer with its oxygen content. J Appl Phys. 2003;93(9):5456–9.

    CAS  Google Scholar 

  55. International Energy Agency (IEA). World Energy Outlook 2012; 2012.

    Google Scholar 

  56. Wallace SK, Mitzi DB, Walsh A. The steady rise of kesterite solar cells. ACS Energy Lett. 2017;2(4):776–9.

    CAS  Google Scholar 

  57. Surgina GD, Zenkevich AV, Sipaylo IP, Nevolin VN, Drube W, Teterin PE, Minnekaev MN. Reactive pulsed laser deposition of Cu2ZnSnS4 thin films in H2S. Thin Solid Films. 2013;535(1):44–7.

    CAS  Google Scholar 

  58. Li J, Du Q, Liu W, Jiang G, Feng X, Zhang W, Zhu J, Zhu C. The band offset at CdS/Cu2ZnSnS4 heterojunction interface. Electron Mater Lett. 2012;8(4):365–7.

    CAS  Google Scholar 

  59. Ettema ARHF, de Groot RA, Haas C, Turner TS. Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations. Phys Rev B. 1992;46(12):7363–73.

    CAS  Google Scholar 

  60. Weber A, Mainz R, Schock HW. On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. J Appl Phys. 2010;107(1):13516.

    Google Scholar 

  61. Lafond A, Choubrac L, Guillot-Deudon C, Fertey P, Evain M, Jobic S. X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2014;70(2):390–4.

    CAS  Google Scholar 

  62. Bosson CJ, Birch MT, Halliday DP, Knight KS, Tang CC, Kleppe AK, Hatton PD. Crystal structure and cation disorder in bulk Cu2ZnSnS4 using neutron diffraction and x-ray anomalous scattering. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE, 2016; pp 0405–0410.

    Google Scholar 

  63. Malerba C, Azanza Ricardo CL, Valentini M, Biccari F, Müller M, Rebuffi L, Esposito E, Mangiapane P, Scardi P, Mittiga A. Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties. J Renew Sustain Energy. 2014;6(1):11404.

    Google Scholar 

  64. Razmara MF. The crystal chemistry of the solid solution series between chalcostibite (CuSbS2) and emplectite (CuBiS2). Mineral Mag. 1997;61(404):79–88.

    CAS  Google Scholar 

  65. Yan C, Liu F, Song N, Ng BK, Stride JA, Tadich A, Hao X. Band alignments of different buffer layers (CdS, Zn(O, S), and In2S3) on Cu2ZnSnS4. Appl Phys Lett. 2014;104(17):173901.

    Google Scholar 

  66. Just J, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T. Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis. Appl Phys Lett. 2011;2011(99):262105.

    Google Scholar 

  67. Bär M, Schubert BA, Marsen B, Wilks RG, Blum M, Krause S, Pookpanratana S, Zhang Y, Unold T, Yang W, Weinhardt L, Heske C, Schock HW. Cu2ZnSnS4 thin-film solar cell absorbers illuminated by soft x-rays. J Mater Res. 2012;27(8):1097–104.

    Google Scholar 

  68. Durose K, Asher SE, Jaegermann W, Levi D, McCandless BE, Metzger W, Moutinho H, Paulson PD, Perkins CL, Sites JR, Teeter G, Terheggen M. Physical characterization of thin-film solar cells. Prog Photovoltaics. 2004;12(2–3):177–217.

    CAS  Google Scholar 

  69. Bär M, Nishiwaki S, Weinhardt L, Pookpanratana S, Fuchs O, Blum M, Yang W, Denlinger JD, Shafarman WN, Heske C. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films. Appl Phys Lett 2008;93(24).

    Google Scholar 

  70. Chen S, Yang J-H, Gong XG, Walsh A, Wei S-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys Rev B. 2010;81(24):245204.

    Google Scholar 

  71. Scragg JJ, Watjen JT, Edoff M, Ericson T, Kubart T, Platzer-Bjorkman C. A Detrimental Reaction at the Molybdenum Back Contact in Cu2ZnSn(S,Se)4 thin-film solar cells. J Am Chem Soc. 2012;134(47):19330–3.

    CAS  Google Scholar 

  72. Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ Sci. 2015;8(11):3134–59.

    CAS  Google Scholar 

  73. Yuan ZK, Chen S, Xiang H, Gong XG, Walsh A, Park JS, Repins I, Wei SH. Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds. Adv Funct Mater. 2015;25(43):6733–43.

    CAS  Google Scholar 

  74. Yin L, Cheng G, Feng Y, Li Z, Yang C, Xiao X. Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization. RSC Adv. 2015;5(50):40369–74.

    CAS  Google Scholar 

  75. Biswas K, Lany S, Zunger A. The electronic consequences of multivalent elements in inorganic solar absorbers: multivalency of Sn in Cu2ZnSnS4. Appl Phys Lett. 2010;96(20):94–7.

    Google Scholar 

  76. Vidal J, Lany S, D’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett. 2012;100(3):32104.

    Google Scholar 

  77. Banai RE, Horn MW, Brownson JRS. A review of Tin (II) monosulfide and its potential as a photovoltaic absorber. Sol Energy Mater Sol Cells. 2016;150:112–29.

    CAS  Google Scholar 

  78. Huang C-C, Lin Y-J, Chuang C-Y, Liu C-J, Yang Y-W. Conduction-type control of SnSx films prepared by the sol–gel method for different sulfur contents. J Alloys Compd. 2013;553:208–11.

    CAS  Google Scholar 

  79. Kumagai Y, Burton LA, Walsh A, Oba F. Electronic structure and defect physics of tin sulfides: SnS, Sn2S3, and SnS2. Phys Rev Appl. 2016;6(1):14009.

    Google Scholar 

  80. Krishnan B, Shaji S, Ernesto Ornelas R. Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting. J Mater Sci: Mater Electron. 2015;26(7):4770–81.

    CAS  Google Scholar 

  81. Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater. 2014;26(10):3135–43.

    CAS  Google Scholar 

  82. Unold T, Gütay L. Photoluminescence analysis of thin-film solar cells. In: Advanced characterization techniques for thin film solar cells. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp 151–175.

    Google Scholar 

  83. Huang TJ, Yin X, Qi G, Gong H. CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. Phys Status Solid Rapid Res Lett. 2014;8(9):735–62.

    CAS  Google Scholar 

  84. Lin L, Yu J, Cheng S, Lu P, Lai Y, Lin S, Zhao P. Band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface investigated by x-ray photoemission spectroscopy. Appl Phys A. 2014;116(4):2173–7.

    CAS  Google Scholar 

  85. Bao W, Ichimura M. Band offsets at the ZnO/Cu2ZnSnS4 interface based on the first principles calculation. Jpn J Appl Phys. 2013;52(6R):61203.

    Google Scholar 

  86. Nagoya A, Asahi R, Kresse G. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications. J Phys: Condens Matter. 2011;23(40):404203.

    CAS  Google Scholar 

  87. Sugiyama M, Shimizu T, Kawade D, Ramya K, Ramakrishna Reddy KT. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy. J Appl Phys. 2014;115(8):83508.

    Google Scholar 

  88. Park HH, Heasley R, Sun L, Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Sinsermsuksakul P, Chua D, Buonassisi T, Gordon RG. Co-optimization of SnS absorber and Zn(O, S) buffer materials for improved solar cells. Prog Photovoltaics Res Appl. 2015;23(7):901–8.

    CAS  Google Scholar 

  89. Abdel Haleem AM, Ichimura M. Experimental determination of band offsets at the SnS/CdS and SnS/InSxOy heterojunctions. J Appl Phys. 2010;107(3):34507.

    Google Scholar 

  90. Sun L, Haight R, Sinsermsuksakul P, Bok Kim S, Park HH, Gordon RG. Band alignment of SnS/Zn(O, S) heterojunctions in SnS thin film solar cells. Appl Phys Lett. 2013;103(18):181904.

    Google Scholar 

  91. Devika M, Reddy NK, Patolsky F, Gunasekhar KR. Ohmic contacts to SnS films: selection and estimation of thermal stability. J Appl Phys 2008;104(12).

    Google Scholar 

  92. Baranowski LL, Christensen S, Welch AW, Lany S, Young M, Toberer ES, Zakutayev A. Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films. Mater Chem Front. 2017.

    Google Scholar 

  93. Hinuma Y, Oba F, Kumagai Y, Tanaka I. Ionization potentials of (112) and (\( 11\bar{2} \)) facet surfaces of CuInSe2 and CuGaSe2. Phys Rev B. 2012;86(24):245433.

    Google Scholar 

  94. Mann JB, Meek TL, Knight ET, Capitani JF, Allen LC. Configuration energies of the D-block elements. J Am Chem Soc. 2000;122(21):5132–7.

    CAS  Google Scholar 

  95. Mann JB, Meek TL, Allen LC. Configuration energies of the main group elements. J Am Chem Soc. 2000;122(12):2780–3.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas James Whittles .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whittles, T.J. (2018). Conclusions and Recommendations for the Future. In: Electronic Characterisation of Earth‐Abundant Sulphides for Solar Photovoltaics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-91665-1_7

Download citation

Publish with us

Policies and ethics