The Electronic Structure of Cu3BiS3 for Use as a PV Absorber

  • Thomas James WhittlesEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter involves measurements of thin-film Cu3BiS3 (CBS) and the electronic characterisation of this material for use in PV devices.


  1. 1.
    U.S. Geological Survey. Mineral commodity summaries 2016; 2016.Google Scholar
  2. 2.
    Hintze CAF. Handbuch Der Mineralogie; Cambridge; 1904.Google Scholar
  3. 3.
    Kocman V, Nuffield EW. The crystal structure of Wittichenite, Cu3BiS3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1973;29 (11):2528–35.Google Scholar
  4. 4.
    Nuffield EW. Studies of mineral sulpho-salts: Xi-Wittichenite (Klaprothite). Econ Geol. 1947;42(12):147–60.Google Scholar
  5. 5.
    Nair PK, Huang L, Nair MTS, Hu H, Meyers EA, Zingaro RA. Formation of P-type Cu3BiS3 absorber thin films by annealing chemically deposited Bi2S3–CuS thin films. J Mater Res. 1997;12(3):651–6.Google Scholar
  6. 6.
    Yin J, Jia J. Synthesis of Cu3BiS3 nanosheet films on TiO2 nanorod arrays by a solvothermal route and their photoelectrochemical characteristics. Cryst Eng Comm. 2014;16(13):2795.Google Scholar
  7. 7.
    Zeng Y, Li H, Qu B, Xiang B, Wang L, Zhang Q, Li Q, Wang T, Wang Y. Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. Cryst Eng Comm. 2012;14(2):550–4.Google Scholar
  8. 8.
    Murali B, Madhuri M, Krupanidhi SB. Near-infrared photoactive Cu3BiS3 thin films by Co-evaporation. J Appl Phys. 2014;115(17):173109.Google Scholar
  9. 9.
    Liu J, Wang P, Zhang X, Wang L, Wang D, Gu Z, Tang J, Guo M, Cao M, Zhou H, Liu Y, Chen C. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano. 2016;10(4):4587–98.Google Scholar
  10. 10.
    Kehoe AB, Temple DJ, Watson GW, Scanlon DO. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. Phys Chem Chem Phys. 2013;15(37):15477.Google Scholar
  11. 11.
    Colombara D, Peter LM, Hutchings K, Rogers KD, Schäfer S, Dufton JTR, Islam MS. Formation of Cu3BiS3 thin films via sulfurization of Bi–Cu metal precursors. Thin Solid Films. 2012;520(16):5165–71.Google Scholar
  12. 12.
    Gerein NJ, Haber JA. One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem Mater. 2006;18(26):6297–302.Google Scholar
  13. 13.
    Mesa F, Dussan A, Gordillo G. Study of the growth process and optoelectrical properties of nanocrystalline Cu3BiS3 thin films. Phys status solidi. 2010;7(3–4):NA-NA.Google Scholar
  14. 14.
    Mesa F, Gordillo G. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two-step process. J Phys: Conf Ser. 2009;167:12019.Google Scholar
  15. 15.
    Estrella V, Nair MTS, Nair PK. Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films. Semicond Sci Technol. 2003;18(2):190–4.Google Scholar
  16. 16.
    Kumar M, Persson C. Cu3BiS3 as a potential photovoltaic absorber with high optical efficiency. Appl Phys Lett. 2013;102(6):3–7.Google Scholar
  17. 17.
    Yakushev MV, Maiello P, Raadik T, Shaw MJ, Edwards PR, Krustok J, Mudryi AV, Forbes I, Martin RW. Electronic and structural characterisation of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics. Thin Solid Films. 2014;562:195–9.Google Scholar
  18. 18.
    Gerein N, Haber J. Synthesis and optical and electrical properties of thin films Cu3BiS3-a potential solar absorber for photovoltaic devices. In: 2006 IEEE 4th world conference on photovoltaic energy conference; IEEE, 2006; vol. 1. p. 564–6.Google Scholar
  19. 19.
    Gerein NJ, Haber JA. Synthesis of Cu3BiS3 thin films by heating metal and metal sulfide precursor films under hydrogen sulfide. Chem Mater. 2006;18(26):6289–96.Google Scholar
  20. 20.
    Zhou J, Bian G-Q, Zhu Q-Y, Zhang Y, Li C-Y, Dai J. Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J Solid State Chem. 2009;182(2):259–264.Google Scholar
  21. 21.
    Zhong J, Xiang W, Cai Q, Liang X. Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods. Mater Lett. 2012;70:63–6.Google Scholar
  22. 22.
    Hu J, Deng B, Wang C, Tang K, Qian Y. Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3BiS3 and Pb1−xBi2x/3S. Mater Chem Phys. 2003;78(3):650–4.Google Scholar
  23. 23.
    Viezbicke BD, Birnie DP. Solvothermal synthesis of Cu3BiS3 enabled by precursor complexing. ACS Sustain Chem Eng. 2013;1(3):306–8.Google Scholar
  24. 24.
    Chen D, Shen G, Tang K, Liu X, Qian Y, Zhou G. The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. J Cryst Growth. 2003;253(1–4):512–6.Google Scholar
  25. 25.
    Yan J, Yu J, Zhang W, Li Y, Yang X, Li A, Yang X, Wang W, Wang J. Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane. J Mater Sci. 2012;47(9):4159–66.Google Scholar
  26. 26.
    Hu H, Gomez-Daza O, Nair PK. Screen-printed Cu3BiS3-polyacrylic acid composite coatings. J Mater Res. 1998;13(9):2453–6.Google Scholar
  27. 27.
    Liu S, Wang X, Nie L, Chen L, Yuan R. Spray pyrolysis deposition of Cu3BiS3 thin films. Thin Solid Films. 2015;585:72–5.Google Scholar
  28. 28.
    Mesa F, Dussan A, Paez-Sierra BA, Rodriguez-Hernandez H. Hall effect and transient surface photovoltage (SPV) study of Cu3BiS3 thin films abstract. Univ Sci. 2014;19(2):99–105.Google Scholar
  29. 29.
    Gerein NJ, Haber JA. Cu3BiS3, Cu3BiS4, Ga3BiS3 and Cu5Ga2BiS8 as potential solar absorbers for thin film photovoltaics. In: Conference record of the thirty-first IEEE photovoltaic specialists conference, 2005; IEEE, 2005. p. 159–62.Google Scholar
  30. 30.
    Mesa F, Dussan A, Sandino J, Lichte H. Characterization of Al/Cu3BiS3/buffer/ZnO solar cells structure by TEM. J Nanopart Res. 2012;14(9).Google Scholar
  31. 31.
    Mesa F, Fajardo D. Study of heterostructures of Cu3BiS3—buffer layer measured by kelvin probe force microscopy measurements (KPFM) 1. Can J Phys. 2014;92(7/8):892–5.Google Scholar
  32. 32.
    Schorr S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films. 2007;515(15):5985–91.Google Scholar
  33. 33.
    Lundegaard LF, Makovicky E, Boffa-Ballaran T, Balic-Zunic T. Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa. Phys Chem Miner. 2005;32(8–9):578–84.Google Scholar
  34. 34.
    Caracas R, Gonze X. First-principles study of the electronic properties of A2B3 minerals, with A = Bi, Sb and B = S. Se Phys Chem Miner. 2005;32(4):295–300.Google Scholar
  35. 35.
    Evans HT. Crystal structure of low chalcocite. Nat Phys Sci. 1971;232(29):69–70.Google Scholar
  36. 36.
    Temple DJ, Kehoe AB, Allen JP, Watson GW, Scanlon DO. Geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): alternative solar cell absorber materials? J Phys Chem C. 2012;116(13):7334–40.Google Scholar
  37. 37.
    Rodrı́guez-Lazcano Y, Nair MTS, Nair PK. CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films. J Cryst Growth. 2001;223(3):399–406.Google Scholar
  38. 38.
    Mesa F, Chamorro W, Vallejo W, Baier R, Dittrich T, Grimm A, Lux-Steiner MC, Sadewasser S. Junction formation of Cu3BiS3 Investigated by kelvin probe force microscopy and surface photovoltage measurements. Beilstein J Nanotechnol. 2012;3(1):277–84.Google Scholar
  39. 39.
    Septina W, Ikeda S, Iga Y, Harada T, Matsumura M. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films. 2014;550:700–4.Google Scholar
  40. 40.
    Siebentritt S. Why are kesterite solar cells not 20% efficient? Thin Solid Films. 2013;535(1):1–4.Google Scholar
  41. 41.
    Barr TL, Seal S. Nature of the use of adventitious carbon as a binding energy standard. J Vac Sci Technol A Vac Surf Film. 1995;13(3):1239.Google Scholar
  42. 42.
    Morgan WE, Stec WJ, van Wazer JR. Inner-orbital binding energy shifts of antimony and bismuth compounds. Inorg Chem. 1972;12(4):953–5.Google Scholar
  43. 43.
    Lebugle A, Axelsson U, Nyholm R, Mårtensson N. Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys Scr. 1981;23(5A):825–7.Google Scholar
  44. 44.
    Coster D, De Kronig RL. New type of auger effect and its influence on the X-ray spectrum. Physica. 1935;2(1–12):13–24.Google Scholar
  45. 45.
    Nyholm R, Martensson N, Lebugle A, Axelsson U. Auger and Coster-Kronig broadening effects in the 2p and 3p photoelectron spectra from the metals 22Ti-30Zn. J Phys F: Met Phys. 1981;11(8):1727–33.Google Scholar
  46. 46.
    Nyholm R, Berndtsson A, Martensson N. Core level binding energies for the elements Hf to Bi (Z = 72–83). J Phys C: Solid State Phys. 1980;13(36):L1091–6.Google Scholar
  47. 47.
    Shalvoy RB, Fisher GB, Stiles PJ. Bond Ionicity and structural stability of some average-valence-five materials studied by X-ray photoemission. Phys Rev B. 1977;15(4):1680–97.Google Scholar
  48. 48.
    Barrie A, Drummond IW, Herd QC. Correlation of calculated and measured 2p spin-orbit splitting by electron spectroscopy using monochromatic X-radiation. J Electron Spectros Relat Phenom. 1974;5(1):217–25.Google Scholar
  49. 49.
    Kresse G, Hafner J. Ab Initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558–61.Google Scholar
  50. 50.
    Kresse G, Hafner J. Ab Initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in Germanium. Phys Rev B. 1994;49(20):14251–69.Google Scholar
  51. 51.
    Kresse G, Furthmüller J. Efficiency of Ab-Initio Total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.Google Scholar
  52. 52.
    Kresse G, Furthmüller J. Efficient iterative schemes for Ab Initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–86.Google Scholar
  53. 53.
    Deshmukh SG, Patel SJ, Patel KK, Panchal AK, Kheraj V. Effect of annealing temperature on flowerlike Cu3BiS3 thin films grown by chemical bath deposition. J Electron Mater. 2017;2–4.Google Scholar
  54. 54.
    Nair PK, Nair SM, Hu H, Huang L, Zingaro RA, Meyers EA. New P-type absorber films formed by interfacial diffusion in chemically deposited metal chalcogenide multilayer films. In: Lampert CM, Deb SK, Granqvist C-G, editors. Proceedings of the SPIE; 1995, vol. 2531. p. 208–19.Google Scholar
  55. 55.
    Yakushev MV, Maiello P, Raadik T, Shaw MJ, Edwards PR, Krustok J, Mudryi AV, Forbes I, Martin RW. Investigation of the structural, optical and electrical properties of Cu3BiS3 semiconducting thin films. Energy Procedia. 2014;60(C):166–72.Google Scholar
  56. 56.
    Deshmukh SG, Panchal AK, Kheraj V. Development of Cu3BiS3 thin films by chemical bath deposition route. J Mater Sci Mater Electron. 2017;28.Google Scholar
  57. 57.
    Colombara D, Peter LM, Rogers KD, Hutchings K. Thermochemical and kinetic aspects of the sulfurization of Cu–Sb and Cu–Bi thin films. J Solid State Chem. 2012;186:36–46.Google Scholar
  58. 58.
    Wang N. The Cu–Bi–S System: results from low-temperature experiments. Min Mag. 1994;58(391):201–4.Google Scholar
  59. 59.
    Scragg JJ, Dale PJ, Colombara D, Peter LM. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. Chem Phys Chem. 2012;13(12):3035–46.Google Scholar
  60. 60.
    Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion. Thin Solid Films. 2012;520(10):3721–8.Google Scholar
  61. 61.
    Bär M, Weinhardt L, Heske C. Soft X-ray and electron spectroscopy: a unique “Tool Chest” to characterize the chemical and electronic properties of surfaces and interfaces. In: Advanced characterization techniques for thin film solar cells. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany; 2011. p. 387–409.Google Scholar
  62. 62.
    Fritsche J, Klein A, Jaegermann W. Thin film solar cells: materials science at interfaces. Adv Eng Mater. 2005;7(10):914–20.Google Scholar
  63. 63.
    Bär M, Schubert B-A, Marsen B, Krause S, Pookpanratana S, Unold T, Weinhardt L, Heske C, Schock H-W. Native oxidation and Cu-poor surface structure of thin film Cu2ZnSnS4 solar cell absorbers. Appl Phys Lett. 2011;99(11):112103.Google Scholar
  64. 64.
    Whittles TJ, Burton LA, Skelton JM, Walsh A, Veal TD, Dhanak VR. Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem Mater. 2016;28(11):3718–26.Google Scholar
  65. 65.
    Grigas J, Talik E, Lazauskas V. X-ray photoelectron spectra and electronic structure of Bi2S3 crystals. Phys. status solidi. 2002;232(2):220–30.Google Scholar
  66. 66.
    Yeh JJ, Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At Data Nucl Data Tables. 1985;32(1):1–155.Google Scholar
  67. 67.
    Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells. 2011;95(3):1001–4.Google Scholar
  68. 68.
    Rudmann D, Bilger G, Kaelin M, Haug FJ, Zogg H, Tiwari AN. Effects of NaF coevaporation on structural properties of Cu(In, Ga)Se2 thin films. Thin Solid Films. 2003;431–432(3):37–40.Google Scholar
  69. 69.
    Kranz L, Perrenoud J, Pianezzi F, Gretener C, Rossbach P, Buecheler S, Tiwari AN. Effect of sodium on recrystallization and photovoltaic properties of CdTe solar cells. Sol Energy Mater Sol Cells. 2012;105:213–9.Google Scholar
  70. 70.
    Lenglet M, Kartouni K, Machefert J, Claude JM, Steinmetz P, Beauprez E, Heinrich J, Celati N. Low temperature oxidation of copper: the formation of CuO. Mater Res Bull. 1995;30(4):393–403.Google Scholar
  71. 71.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257(3):887–98.Google Scholar
  72. 72.
    Czanderna AW, Madey TE, Powell CJ. Beam effects, surface topography, and depth profiling in surface analysis. In: Czanderna AW, Madey TE, Powell CJ, editors. Methods of surface characterization. Kluwer Academic Publishers: Boston; 2002, vol. 5.Google Scholar
  73. 73.
    Hochella MF, Brown GE. Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy (XPS). Geochim Cosmochim Acta. 1988;52(6):1641–8.Google Scholar
  74. 74.
    Morgan WE, Van Wazer JR. Binding energy shifts in the X-ray photoelectron spectra of a series of related group IVa compounds. J Phys Chem. 1973;77(7):964–9.Google Scholar
  75. 75.
    Debies TP, Rabalais JW. X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te). Chem Phys. 1977;20(2):277–83.Google Scholar
  76. 76.
    Dharmadhikari VS, Sainkar SR, Badrinarayan S, Goswami A. Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy. J Electron Spectros Relat Phenomena. 1982;25(2):181–9.Google Scholar
  77. 77.
    Schuhl Y, Baussart H, Delobel R, Le Bras M, Leroy J-M. Study of mixed-oxide catalysts containing bismuth, vanadium and antimony. J Chem Soc, Faraday Trans. 1983;1(79):2055–69.Google Scholar
  78. 78.
    Hutchins EB, Lenher V. Pentavalent Bismuth. J Am Chem Soc. 1907;29(1):31–3.Google Scholar
  79. 79.
    Leontie L, Caraman M, Alexe M, Harnagea C. Structural and optical characteristics of bismuth oxide thin films. Surf Sci. 2002;507–510:480–5.Google Scholar
  80. 80.
    George J, Pradeep B, Joseph KS. Oxidation of bismuth films in air and superheated steam. Thin Solid Films. 1986;144(2):255–64.Google Scholar
  81. 81.
    Powell CJ. Recommended Auger parameters for 42 elemental solids. J Electron Spectros Relat Phenomena. 2012;185(1–2):1–3.Google Scholar
  82. 82.
    Peisert H, Chassé T, Streubel P, Meisel A, Szargan R. Relaxation energies in XPS and XAES of solid sulfur compounds. J Electron Spectros Relat Phenomena. 1994;68(C):321–8.Google Scholar
  83. 83.
    Smart RSC, Amarantidis J, Skinner WM, Prestidge CA, La Vanier L, Grano SR. Surface analytical studies of oxidation and collector adsorption in sulfide mineral flotation. In: Scanning microscopy; 2003; vol. 12. p. 3–62.Google Scholar
  84. 84.
    Partain LD, Schneider RA, Donaghey LF, McLeod PS. Surface chemistry of CuxS and CuxS/CdS determined from X-ray photoelectron spectroscopy. J Appl Phys. 1985;57(11):5056.Google Scholar
  85. 85.
    Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K. Molecular spectroscopy by means of ESCA II. sulfur compounds. correlation of electron binding energy with structure. Phys Scr. 1970;1(5–6):286–98.Google Scholar
  86. 86.
    Chen R, So MH, Che C-M, Sun H. Controlled synthesis of high crystalline bismuth sulfide nanorods: using bismuth citrate as a precursor. J Mater Chem. 2005;15(42):4540.Google Scholar
  87. 87.
    Fang Z, Liu Y, Fan Y, Ni Y, Wei X, Tang K, Shen J, Chen Y. Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure. J Phys Chem C. 2011;115(29):13968–76.Google Scholar
  88. 88.
    Liao X-H, Wang H, Zhu J-J, Chen H-Y. Preparation of Bi2S3 nanorods by microwave irradiation. Mater Res Bull. 2001;36(13–14):2339–46.Google Scholar
  89. 89.
    Liufu S-C, Chen L-D, Yao Q, Wang C-F. Bismuth sulfide thin films with low resistivity on self-assembled monolayers. J Phys Chem B. 2006;110(47):24054–61.Google Scholar
  90. 90.
    Panigrahi PK, Pathak A. The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition. J Nanoparticles. 2013;2013:1–11.Google Scholar
  91. 91.
    Purkayastha A, Yan Q, Raghuveer MS, Gandhi DD, Li H, Liu ZW, Ramanujan RV, Borca-Tasciuc T, Ramanath G. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods. Adv Mater. 2008;20(14):2679–83.Google Scholar
  92. 92.
    Tamašauskaitė Tamašiūnaitė L, Šimkūnaitė-Stanynienė B, Naruškevičius L, Valiulienė G, Žielienė A, Sudavičius A. EQCM study of electrochemical modification of Bi2S3 films in the Zn2+ -containing electrolyte. J Electroanal Chem. 2009;633(2):347–53.Google Scholar
  93. 93.
    Tamašauskaitė-Tamašiūnaitė L, Valiulienė G, Žielienė A, Šimkūnaitė-Stanynienė B, Naruškevičius L, Sudavičius A. EQCM study on the oxidation/reduction of bismuth sulfide thin films. J Electroanal Chem. 2010;642(1):22–9.Google Scholar
  94. 94.
    Wang H, Zhu J-J, Zhu J-M, Chen H-Y. sonochemical method for the preparation of bismuth sulfide nanorods. J Phys Chem B. 2002;106(15):3848–54.Google Scholar
  95. 95.
    Zhong J, Xiang W, Liu L, Yang X, Cai W, Zhang J, Liang X. Biomolecule-assisted solvothermal synthesis of bismuth sulfide nanorods. J Mater Sci Technol. 2010;26(5):417–22.Google Scholar
  96. 96.
    Lou W, Chen M, Wang X, Liu W. Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment. Chem Mater. 2007;19(4):872–8.Google Scholar
  97. 97.
    Yang X, Wang X, Zhang Z. Facile solvothermal synthesis of single-crystalline Bi2S3 nanorods on a large scale. Mater Chem Phys. 2006;95(1):154–7.Google Scholar
  98. 98.
    Li W. Synthesis and characterization of bismuth sulfide nanowires through microwave solvothermal technique. Mater Lett. 2008;62(2):243–5.Google Scholar
  99. 99.
    Viezbicke BD, Patel S, Davis BE, Birnie DP. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys status solidi. 2015;252(8):1700–10.Google Scholar
  100. 100.
    Yan C, Gu E, Liu F, Lai Y, Li J, Liu Y. Colloidal synthesis and characterizations of Wittichenite copper bismuth sulphide nanocrystals. Nanoscale. 2013;5(5):1789.Google Scholar
  101. 101.
    Burton LA, Whittles TJ, Hesp D, Linhart WM, Skelton JM, Hou B, Webster RF, O’Dowd G, Reece C, Cherns D, Fermin DJ, Veal TD, Dhanak VR, Walsh A. Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J Mater Chem A. 2016;4(4):1312–8.Google Scholar
  102. 102.
    Wei SH, Zunger A. Calculated natural band offsets of All II-VI and III-V semiconductors: chemical trends and the role of cation D orbitals. Appl Phys Lett. 1998;72(16):2011–3.Google Scholar
  103. 103.
    Mesa F, Gordillo G, Dittrich T, Ellmer K, Baier R, Sadewasser S. Transient surface photovoltage of P-Type Cu3BiS3. Appl Phys Lett. 2010;96(8):82113.Google Scholar
  104. 104.
    Kim J, Lägel B, Moons E, Johansson N. Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison. Synth Met. 2000:311–314.Google Scholar
  105. 105.
    Bak T, Nowotny J, Rekas M, Sorrell CC. Photo-electrochemical hydrogen generation from water using solar energy. Materials-Related Aspects Int J Hydrogen Energy. 2002;27(10):991–1022.Google Scholar
  106. 106.
    Klein A. Interface properties of dielectric oxides. J Am Ceram Soc. 2016;99(2):369–87.Google Scholar
  107. 107.
    Klein A. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J Phys: Condens Matter. 2015;27(13):134201.Google Scholar
  108. 108.
    Burton LA, Walsh A. Band alignment in SnS thin-film solar cells: possible origin of the low conversion efficiency. Appl Phys Lett. 2013;102(13):132111.Google Scholar
  109. 109.
    Hinuma Y, Oba F, Kumagai Y, Tanaka I. Ionization potentials of (112) and \( (11\bar{2})\) facet surfaces of CuInSe2 and CuGaSe2. Phys Rev B. 2012;86(24):245433.Google Scholar
  110. 110.
    Teeter G. X-ray and ultraviolet photoelectron spectroscopy measurements of Cu-doped CdTe(111)-B: observation of temperature-reversible CuxTe precipitation and effect on ionization potential. J Appl Phys. 2007;102(3):34504.Google Scholar
  111. 111.
    Pookpanratana S, Repins I, Bär M, Weinhardt L, Zhang Y, Félix R, Blum M, Yang W, Heske C, Bar M, Felix R. CdS/Cu(In, Ga)Se2 interface formation in high-efficiency thin film solar cells. Appl Phys Lett. 2010;97(7):74101.Google Scholar
  112. 112.
    Kumar SG, Rao KSRK. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ Sci. 2014;7(1):45–102.Google Scholar
  113. 113.
    Sugiyama M, Shimizu T, Kawade D, Ramya K, Ramakrishna Reddy KT. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy. J Appl Phys. 2014;115(8):83508.Google Scholar
  114. 114.
    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Sol Energy Mater Sol Cells. 2001;67(1–4):83–8.Google Scholar
  115. 115.
    Sinsermsuksakul P, Hartman K, Bok Kim S, Heo J, Sun L, Hejin Park H, Chakraborty R, Buonassisi T, Gordon RG. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett. 2013;102(5):53901.Google Scholar
  116. 116.
    Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater. 2014;4(15):1400496.Google Scholar
  117. 117.
    Ley L, Pollak RA, McFeely FR, Kowalczyk SP, Shirley DA. Total valence-band densities of states of III-V and II-VI compounds from X-ray photoemission spectroscopy. Phys Rev B. 1974;9(2):600–621.Google Scholar
  118. 118.
    Zhang Y, Yuan X, Sun X, Shih B-C, Zhang P, Zhang W. Comparative study of structural and electronic properties of Cu-based multinary semiconductors. Phys Rev B. 2011;84(7):75127.Google Scholar
  119. 119.
    Maeda T, Wada T. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds. Phys Status Solidi. 2009;6(5):1312–6.Google Scholar
  120. 120.
    Lukashev P, Lambrecht WRL, Kotani T, van Schilfgaarde M. Electronic and crystal structure of Cu2−xS: full-potential electronic structure calculations. Phys Rev B. 2007;76(19):195202.Google Scholar
  121. 121.
    Mann JB, Meek TL, Knight ET, Capitani JF, Allen LC. Configuration energies of the D-block elements. J Am Chem Soc. 2000;122(21):5132–7.Google Scholar
  122. 122.
    Mann JB, Meek TL, Allen LC. Configuration energies of the main group elements. J Am Chem Soc. 2000;122(12):2780–3.Google Scholar
  123. 123.
    Walsh A, Payne DJ, Egdell RG, Watson GW. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem Soc Rev. 2011;40(9):4455–63.Google Scholar
  124. 124.
    Yu L, Kokenyesi RS, Keszler DA, Zunger A. Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater. 2013;3(1):43–8.Google Scholar
  125. 125.
    Menéndez-Proupin E, Gutiérrez G, Palmero E, Peña JL. Electronic structure of crystalline binary and ternary Cd – Te − O compounds. Phys Rev B. 2004;70(3):35112.Google Scholar
  126. 126.
    Meijer PHE, Pecheur P, Toussaint G. Electronic structure of the Cd vacancy in CdTe. Phys status solidi. 1987;140(1):155–62.Google Scholar
  127. 127.
    Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater. 2014;26(10):3135–43.Google Scholar
  128. 128.
    Chen S, Yang J-H, Gong XG, Walsh A, Wei S-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys Rev B. 2010;81(24):245204.Google Scholar
  129. 129.
    Siebentritt S, Igalson M, Persson C, Lany S. The electronic structure of chalcopyrites-bands, point defects and grain boundaries. Prog Photovoltaics Res Appl. 2010;18(6):390–410.Google Scholar
  130. 130.
    Zakutayev A, Caskey CM, Fioretti AN, Ginley DS, Vidal J, Stevanovic V, Tea E, Lany S. Defect tolerant semiconductors for solar energy conversion. J Phys Chem Lett. 2014;5(7):1117–25.Google Scholar
  131. 131.
    Sullivan I, Zoellner B, Maggard PA. Copper(I)-based P -type oxides for photoelectrochemical and photovoltaic solar energy conversion. Chem Mater. 2016;28(17):5999–6016.Google Scholar
  132. 132.
    Chen S, Gong XG, Walsh A, Wei S-H. Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett. 2009;94(4):41903.Google Scholar
  133. 133.
    Payne BP, Biesinger MC, McIntyre NS. X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces. J Electron Spectros Relat Phenomena. 2011;184(1–2):29–37.Google Scholar
  134. 134.
    Uchida K, Ayame A. Dynamic XPS measurements on bismuth molybdate surfaces. Surf Sci. 1996;357–358:170–5.Google Scholar
  135. 135.
    Whitcher TJ, Yeoh KH, Chua CL, Woon KL, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P. The effect of carbon contamination and argon ion sputtering on the work function of chlorinated indium tin oxide. Curr Appl Phys. 2014;14(3):472–5.Google Scholar
  136. 136.
    Bär M, Schubert BA, Marsen B, Wilks RG, Blum M, Krause S, Pookpanratana S, Zhang Y, Unold T, Yang W, Weinhardt L, Heske C, Schock HW. Cu2ZnSnS4 thin-film solar cell absorbers illuminated by soft X-rays. J Mater Res. 2012;27(8):1097–104.Google Scholar
  137. 137.
    Durose K, Asher SE, Jaegermann W, Levi D, McCandless BE, Metzger W, Moutinho H, Paulson PD, Perkins CL, Sites JR, Teeter G, Terheggen M. Physical characterization of thin-film solar cells. Prog Photovoltaics. 2004;12(2–3):177–217.Google Scholar
  138. 138.
    Morasch J, Li S, Brötz J, Jaegermann W, Klein A. Reactively magnetron sputtered Bi2O3 thin films: analysis of structure, optoelectronic, interface, and photovoltaic properties. Phys status solidi. 2014;211(1):93–100.Google Scholar
  139. 139.
    Shuk P. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics. 1996;89(3–4):179–96.Google Scholar
  140. 140.
    Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner. 2000;85(3–4):543–56.Google Scholar
  141. 141.
    Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal. 1981;3(5):211–25.Google Scholar
  142. 142.
    Gerson AR, Bredow T. Interpretation of sulphur 2p XPS spectra in sulfide minerals by means of Ab initio calculations. Surf Interface Anal. 2000;29(2):145–50.Google Scholar
  143. 143.
    Altamura G, Vidal J. Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem Mater. 2016;28(11):3540–63.Google Scholar
  144. 144.
    Meeder A, Weinhardt L, Stresing R, Marron DF, Wurz R, Babu SM, Schedel-Niedrig T, Lux-Steiner MC, Heske C, Umbach E. Surface and bulk properties of CuGaSe2 thin films. J Phys Chem Solids. 2003;64(9–10):1553–7.Google Scholar
  145. 145.
    Delbos S. Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics. 2012;3:35004.Google Scholar
  146. 146.
    Schmid D, Ruckh M, Grunwald F, Schock HW. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J Appl Phys. 1993;73(6):2902–9.Google Scholar
  147. 147.
    Tuttle JR, Albin DS, Noufi R. Thoughts on the microstructure of polycrystalline thin film CuInSe2 and its impact on material and device performance. Sol Cells. 1991;30(1–4):21–38.Google Scholar
  148. 148.
    Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells. 2015;132:499–506.Google Scholar
  149. 149.
    Pfisterer F, Bloss WH. Development of Cu2S–CdS thin film solar cells and transfer to industrial production. Sol Cells. 1984;12(1–2):155–61.Google Scholar
  150. 150.
    Popovici I, Duta A. Tailoring the composition and properties of sprayed CuSbS2 thin films by using polymeric additives. Int J Photoenergy. 2012;2012:1–6.Google Scholar
  151. 151.
    Makovicky E. The Phase transformations and thermal expansion of the solid electrolyte Cu3BiS3 between 25 and 300 °C. J Solid State Chem. 1983;49(1):85–92.Google Scholar
  152. 152.
    Makovicky E. Polymorphism in Cu3SbS3 and Cu3BiS3: the ordering schemes for copper atoms and electron microscope observations. Neues Jahrb für Mineral Abhandlungen. 1994;168(2):185–212.Google Scholar
  153. 153.
    Makovicky E, Skinner BJ. On crystallography and structures of copper-rich sulphosalts between 25–170C. Acta Crystallogr A. 1975;31:S65.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Stephenson Institute for Renewable EnergyUniversity of LiverpoolLiverpoolUK

Personalised recommendations