The Electronic Structure of CuSbS2 for Use as a PV Absorber

  • Thomas James WhittlesEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter involves measurements of thin-film samples of CuSbS2 (CAS), and the electronic characterisation of this material for use in PV devices.


  1. 1.
    Wuensch BJ. The crystal structure of tetrahedrite, Cu12Sb4S13. Zeitschrift für Krist. 1964;119(5–6):437–53.Google Scholar
  2. 2.
    Pfitzner A, Bernert T. The system Cu3AsS4–Cu3SbS4 and investigations on normal tetrahedral structures. Zeitschrift für Krist. - Cryst. Mater. 2004;219(1):20–6.Google Scholar
  3. 3.
    Karup-Møller S, Makovicky E. Skinnerite, Cu3SbS3, A New Sulfosalt from the Llimaussaq Alkaline Intrusion, South Greenland. Am. Mineral. 1974;59:889–95.Google Scholar
  4. 4.
    Skinner BJ, Luce FD, Makovicky E. Studies of the sulfosalts of copper III; phases and phase relations in the system Cu-Sb-S. Econ Geol. 1972;67(7):924–38.Google Scholar
  5. 5.
    Yu L, Kokenyesi RS, Keszler DA, Zunger A. Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater. 2013;3(1):43–8.Google Scholar
  6. 6.
    Ramasamy K, Sims H, Butler WH, Gupta A. Selective nanocrystal synthesis and calculated electronic structure of all four phases of copper–antimony–sulfide. Chem Mater. 2014;26(9):2891–9.Google Scholar
  7. 7.
    Hofmann W. Strukturelle und morphologische Zusammenhänge bei erzen vom formeltyp ABC2. Zeitschrift für Krist. Cryst Mater. 1933;84(1–6):177–203.Google Scholar
  8. 8.
    Wachtel A, Noreika A. Growth and characterization of CuSbS2 crystals. J Electron Mater. 1980;9(2):281–97.Google Scholar
  9. 9.
    Wernick JH, Benson KE. New semiconducting ternary compounds. J Phys Chem Solids. 1957;3(1–2):157–9.Google Scholar
  10. 10.
    Ramasamy K, Gupta RK, Sims H, Palchoudhury S, Ivanov S, Gupta A. Layered ternary sulfide CuSbS2 nanoplates for flexible solid-state supercapacitors. J Mater Chem A. 2015;3(25):13263–74.Google Scholar
  11. 11.
    Ramasamy K, Tien B, Archana PS, Gupta A. Copper antimony sulfide (CuSbS2) mesocrystals: a potential counter electrode material for dye-sensitized solar cells. Mater Lett. 2014;124:227–30.Google Scholar
  12. 12.
    Choi YC, Yeom EJ, Ahn TK, Seok SL. CuSbS2-sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angew Chemie Int Ed. 2015;54(13):4005–9.Google Scholar
  13. 13.
    Marino C, Block T, Pöttgen R, Villevieille C. CuSbS2 as a negative electrode material for sodium ion batteries. J Power Sources. 2017;342:616–22.Google Scholar
  14. 14.
    Manolache S, Duta A, Isac L, Nanu M, Goossens A, Schoonman J. The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films. 2007;515(15):5957–60.Google Scholar
  15. 15.
    Garza C, Shaji S, Arato A, Perez Tijerina E, Alan Castillo G, Das Roy TK, Krishnan B. P-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol Energy Mater Sol Cells. 2011;95(8):2001–5.Google Scholar
  16. 16.
    Krishnan B, Shaji S, Ernesto Ornelas R. Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting. J Mater Sci: Mater Electron. 2015;26(7):4770–81.Google Scholar
  17. 17.
    Rabhi A, Kanzari M, Rezig B. Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method. Thin Solid Films. 2009;517(7):2477–80.Google Scholar
  18. 18.
    Kehoe AB, Temple DJ, Watson GW, Scanlon DO. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. Phys Chem Chem Phys. 2013;15(37):15477.Google Scholar
  19. 19.
    Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells. 2015;132:499–506.Google Scholar
  20. 20.
    Popovici I, Duta A. Tailoring the composition and properties of sprayed CuSbS2 thin films by using polymeric additives. Int J Photoenergy. 2012;2012:1–6.Google Scholar
  21. 21.
    Rodrı́guez-Lazcano Y, Nair MTS, Nair PK. CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films. J Cryst Growth. 2001;223(3):399–406.Google Scholar
  22. 22.
    Rodríguez-Lazcano Y, Nair MTS, Nair PK. Photovoltaic P-I-N structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. J Electrochem Soc. 2005;152(8):G635–8.Google Scholar
  23. 23.
    Ganose AM, Savory CN, Scanlon DO. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem Commun. 2017;53(1):20–44.Google Scholar
  24. 24.
    Septina W, Ikeda S, Iga Y, Harada T, Matsumura M. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films. 2014;550:700–4.Google Scholar
  25. 25.
    Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater. 2014;26(10):3135–43.Google Scholar
  26. 26.
    Kumar M, Persson C. CuSbS2 and CuBiS2 as potential absorber materials for thin-film solar cells. J Renew Sustain Energy. 2013;5(3):31616.Google Scholar
  27. 27.
    Wan L, Ma C, Hu K, Zhou R, Mao X, Pan S, Wong LH, Xu J. Two-stage co-evaporated CuSbS2 thin films for solar cells. J Alloys Compd. 2016;680:182–90.Google Scholar
  28. 28.
    Colombara D, Peter LM, Rogers KD, Painter JD, Roncallo S. Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors. Thin Solid Films. 2011;519(21):7438–43.Google Scholar
  29. 29.
    de Souza Lucas FW, Welch AW, Baranowski LL, Dippo PC, Hempel H, Unold T, Eichberger R, Blank B, Rau U, Mascaro LH, Zakutayev A. Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility. J Phys Chem C. 2016;120(33):18377–85.Google Scholar
  30. 30.
    Welch AW, Baranowski LL, Zawadzki P, DeHart C, Johnston S, Lany S, Wolden CA, Zakutayev A. Accelerated development of CuSbS2 thin film photovoltaic device prototypes. Prog Photovoltaics Res Appl. 2016;24(7):929–39.Google Scholar
  31. 31.
    Ramos Aquino JA, Rodriguez Vela DL, Shaji S, Avellaneda DA, Krishnan B. Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber. Phys Status Solidi. 2016;13(1):24–9.Google Scholar
  32. 32.
    Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK, Krishnan B. Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull. 2015;61:215–25.Google Scholar
  33. 33.
    Ornelas-Acosta RE, Avellaneda D, Shaji S, Castillo GA, Das Roy TK, Krishnan B. CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications. J Mater Sci Mater Electron. 2014;25(10):4356–62.Google Scholar
  34. 34.
    Rastogi AC, Janardhana NR. Properties of CuSbS2 thin films electrodeposited from ionic liquids as P-Type absorber for photovoltaic solar cells. Thin Solid Films. 2014;565:285–92.Google Scholar
  35. 35.
    Suehiro S, Horita K, Yuasa M, Tanaka T, Fujita K, Ishiwata Y, Shimanoe K, Kida T. Synthesis of copper–antimony-sulfide nanocrystals for solution-processed solar cells. Inorg Chem. 2015;54(16):7840–5.Google Scholar
  36. 36.
    Suriakarthick R, Nirmal Kumar V, Shyju TS, Gopalakrishnan R. Effect of substrate temperature on copper antimony sulphide thin films from thermal evaporation. J Alloys Compd. 2015;651:423–33.Google Scholar
  37. 37.
    Su H, Xie Y, Wan S, Li B, Qian Y. A novel one-step solvothermal route to nanocrystalline CuSbS2 and Ag3SbS3. Solid State Ionics. 1999;123(1–4):319–24.Google Scholar
  38. 38.
    An C, Liu Q, Tang K, Yang Q, Chen X, Liu J, Qian Y. The influences of surfactant concentration on the quality of chalcostibite nanorods. J Cryst Growth. 2003;256(1–2):128–33.Google Scholar
  39. 39.
    Banu S, Ahn SJ, Ahn SK, Yoon K, Cho A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells. 2016;151:14–23.Google Scholar
  40. 40.
    Maiello P, Zoppi G, Miles RW, Pearsall N, Forbes I. Chalcogenisation of Cu–Sb metallic precursors into Cu3Sb(SexS1−x)3. Sol Energy Mater Sol Cells. 2013;113:186–94.Google Scholar
  41. 41.
    Zhou J, Bian G-Q, Zhu Q-Y, Zhang Y, Li C-Y, Dai J. Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure. J Solid State Chem. 2009;182(2):259–64.Google Scholar
  42. 42.
    Irvine SJC. Materials challenges: inorganic photovoltaic solar energy. In: Irvine SJC, editor. RSC energy and environment series. Cambridge: Royal society of chemistry; 2014.Google Scholar
  43. 43.
    Hofmann, W. Ergebnisse Der Strukturbestimmung Komplexer Sulfide. Zeitschrift für Krist.—Cryst. Mater. 1935, 92 (1–6).Google Scholar
  44. 44.
    Makovicky E. Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochemistry. 2006;61(1):7–125.Google Scholar
  45. 45.
    Maeda T, Wada T. First-principles study of electronic structure of CuSbS2 and CuSbSe2 photovoltaic semiconductors. Thin Solid Films. 2015;582:401–7.Google Scholar
  46. 46.
    Walsh A, Payne DJ, Egdell RG, Watson GW. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem Soc Rev. 2011;40(9):4455–63.Google Scholar
  47. 47.
    Dufton JTR, Walsh A, Panchmatia PM, Peter LM, Colombara D, Islam MS. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys Chem Chem Phys. 2012;14(20):7229.Google Scholar
  48. 48.
    Kyono A. Crystal structures of chalcostibite (CuSbS2) and emplectite (CuBiS2): structural relationship of stereochemical activity between chalcostibite and emplectite. Am Mineral. 2005;90(1):162–5.Google Scholar
  49. 49.
    Temple DJ, Kehoe AB, Allen JP, Watson GW, Scanlon DO. Geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): alternative solar cell absorber materials? J Phys Chem C. 2012;116(13):7334–40.Google Scholar
  50. 50.
    Siebentritt S. Why are kesterite solar cells not 20% efficient? Thin Solid Films. 2013;535(1):1–4.Google Scholar
  51. 51.
    Willian de Souza Lucas F, Welch AW, Baranowski LL, Dippo PC, Mascaro LH, Zakutayev A. Thermal treatment improvement of CuSbS2 absorbers. In: 2015 IEEE 42nd photovoltaic specialist conference (PVSC); IEEE; 2015. pp 1–5.Google Scholar
  52. 52.
    Peccerillo E, Major J, Phillips L, Treharne R, Whittles TJ, Dhanak V, Halliday D, Durose K. Characterization of sulfurized CuSbS2 thin films for PV applications. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC); IEEE, 2014; pp 0266–9.Google Scholar
  53. 53.
    Zhong J, Xiang W, Cai Q, Liang X. Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods. Mater Lett. 2012;70:63–6.Google Scholar
  54. 54.
    Lebugle A, Axelsson U, Nyholm R, Mårtensson N. Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys Scr. 1981;23(5A):825–7.Google Scholar
  55. 55.
    Coster DL, Kronig RD. New type of auger effect and its influence on the X-ray spectrum. Physica. 1935;2(1–12):13–24.Google Scholar
  56. 56.
    Nyholm R, Martensson N, Lebugle A, Axelsson U. Auger and Coster-Kronig broadening effects in the 2p and 3p photoelectron spectra from the metals 22Ti-30Zn. J Phys F: Met Phys. 1981;11(8):1727–33.Google Scholar
  57. 57.
    Nyholm R, Martensson N. Core level binding energies for the elements Zr-Te (Z = 40–52). J Phys C: Solid State Phys. 1980;13(11):L279–84.Google Scholar
  58. 58.
    Barrie A, Drummond IW, Herd QC. Correlation of calculated and measured 2p spin-orbit splitting by electron spectroscopy using monochromatic X-radiation. J Electron Spectros Relat Phenomena. 1974;5(1):217–25.Google Scholar
  59. 59.
    Kresse G, Hafner J. Ab Initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558–61.Google Scholar
  60. 60.
    Kresse G, Hafner J. Ab Initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251–69.Google Scholar
  61. 61.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.Google Scholar
  62. 62.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–86.Google Scholar
  63. 63.
    Rath T, MacLachlan AJ, Brown MD, Haque SA. Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates. J Mater Chem A. 2015;3(47):24155–62.Google Scholar
  64. 64.
    Baker J, Kumar RS, Sneed D, Connolly A, Zhang Y, Velisavljevic N, Paladugu J, Pravica M, Chen C, Cornelius A, Zhao Y. Pressure induced structural transitions in CuSbS2 and CuSbSe2 thermoelectric compounds. J Alloys Compd. 2015;643:186–94.Google Scholar
  65. 65.
    Efthimiopoulos I, Buchan C, Wang Y. Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Sci Rep. 2016;6(April):24246.Google Scholar
  66. 66.
    Pronti L, Felici AC, Alesiani M, Tarquini O, Bracciale MP, Santarelli ML, Pardini G, Piacentini M. Characterisation of corrosion layers formed under burial environment of copper-based greek and roman coins from pompeii. Appl Phys A. 2015;121(1):59–68.Google Scholar
  67. 67.
    Mernagh TP, Trudu AG. A laser raman microprobe study of some geologically important sulphide minerals. Chem Geol. 1993;103(1–4):113–27.Google Scholar
  68. 68.
    Qiu XD, Ji SL, Chen C, Liu GQ, Ye CH. Synthesis, characterization, and surface-enhanced raman scattering of near infrared absorbing Cu3SbS3 nanocrystals. CrystEngComm. 2013;15(48):10431.Google Scholar
  69. 69.
    Aup-Ngoen K, Thongtem T, Thongtem S. Characterization of Cu3SbS4 microflowers produced by a cyclic microwave radiation. Mater Lett. 2012;66(1):182–6.Google Scholar
  70. 70.
    Zakutayev A, Baranowski LL,. Welch AW, Wolden, CA, Toberer ES. Comparison of Cu2SnS3 and CuSbS2 as potential solar cell absorbers. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC); IEEE, 2014; vol. 3, pp 2436–8.Google Scholar
  71. 71.
    Scragg JJ, Dale PJ, Colombara D, Peter LM. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. ChemPhysChem. 2012;13(12):3035–46.Google Scholar
  72. 72.
    Whittles TJ, Burton LA, Skelton JM, Walsh A, Veal TD, Dhanak VR. Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem Mater. 2016;28(11):3718–26.Google Scholar
  73. 73.
    Bär M, Schubert BA, Marsen B, Wilks RG, Blum M, Krause S, Pookpanratana S, Zhang Y, Unold T, Yang W, Weinhardt L, Heske C, Schock HW. Cu2ZnSnS4 Thin-film solar cell absorbers illuminated by soft X-rays. J Mater Res. 2012;27(8):1097–104.Google Scholar
  74. 74.
    Morgan WE, Van Wazer JR. Binding energy shifts in the X-ray photoelectron spectra of a series of related group IVa compounds. J Phys Chem. 1973; 77(7):964–9.Google Scholar
  75. 75.
    Lenglet M, Kartouni K, Machefert J, Claude JM, Steinmetz P, Beauprez E, Heinrich J, Celati N. Low temperature oxidation of copper: the formation of CuO. Mater Res Bull. 1995;30(4):393–403.Google Scholar
  76. 76.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257(3):887–98.Google Scholar
  77. 77.
    Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D. The oxidation states of copper and iron in mineral sulfides, and the Oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta. 2006;70(9):2210–28.Google Scholar
  78. 78.
    Jiasong Z, Weidong X, Huaidong J, Wen C, Lijun L, Xinyu Y, Xiaojuan L, Haitao L. A simple L-cystine-assisted solvothermal approach to Cu3SbS3 nanorods. Mater Lett. 2010;64(13):1499–502.Google Scholar
  79. 79.
    Sarswat PK, Free ML. Enhanced photoelectrochemical response from copper antimony zinc sulfide thin films on transparent conducting electrode. Int J Photoenergy. 2013;2013:1–7.Google Scholar
  80. 80.
    Wang MX, Yue GH, Fan XY, Yan PX. Properties and characterization of Cu3SbS3 nanowires synthesized by solvothermal route. J Cryst Growth. 2008;310(12):3062–6.Google Scholar
  81. 81.
    Peisert H, Chassé T, Streubel P, Meisel A, Szargan R. Relaxation energies in XPS and XAES of solid sulfur compounds. J. Electron Spectros. Relat. Phenomena. 1994;68(C):321–8.Google Scholar
  82. 82.
    van Embden J, Tachibana Y. Synthesis and characterisation of famatinite copper antimony sulfide nanocrystals. J Mater Chem. 2012;22(23):11466.Google Scholar
  83. 83.
    Garbassi F. XPS and AES Study of Antimony Oxides. Surf Interface Anal. 1980;2(5):165–9.Google Scholar
  84. 84.
    Han Q, Chen L, Zhu W, Wang M, Wang X, Yang X, Lu L. Synthesis of Sb2S3 peanut-shaped superstructures. Mater Lett. 2009;63(12):1030–2.Google Scholar
  85. 85.
    Lou W, Chen M, Wang X, Liu W. Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment. Chem Mater. 2007;19(4):872–8.Google Scholar
  86. 86.
    Mesa F, Chamorro W, Vallejo W, Baier R, Dittrich T, Grimm A, Lux-Steiner MC, Sadewasser S. Junction formation of Cu3BiS3 investigated by kelvin probe force microscopy and surface photovoltage measurements. Beilstein J Nanotechnol. 2012;3(1):277–84.Google Scholar
  87. 87.
    Delobel R, Baussart H, Leroy J-M, Grimblot J, Gengembre L. X-Ray photoelectron spectroscopy study of uranium and antimony mixed metal-oxide catalysts. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases. 1983;79(4):879.Google Scholar
  88. 88.
    Morgan WE, Stec WJ, van Wazer JR. Inner-orbital binding energy shifts of antimony and bismuth compounds. Inorg Chem. 1972;12(4):953–5.Google Scholar
  89. 89.
    Tang X, Welzenis RG, van Setten FM, van Bosch AJ. Oxidation of the InSb surface at room temperature. Semicond Sci Technol. 1986;1(6):355–65.Google Scholar
  90. 90.
    Petit EJ, Riga J, Caudano R. Surface and interface XPS characterization of the oxide layer grown on antimony under UV laser irradiation. Surf Sci. 1991;251–252:529–34.Google Scholar
  91. 91.
    Payne BP, Biesinger MC, McIntyre NS. X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces. J Electron Spectros Relat Phenomena. 2011;184(1–2):29–37.Google Scholar
  92. 92.
    Vasquez RP, Grunthaner FJ. Chemical composition of the SiO2/InSb interface as determined by X-ray photoelectron spectroscopy. J Appl Phys. 1981;52(5):3509–14.Google Scholar
  93. 93.
    Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K. Molecular spectroscopy by means of ESCA II. sulfur compounds. correlation of electron binding energy with structure. Phys Scr. 1970;1(5–6):286–98.Google Scholar
  94. 94.
    Gerson AR, Bredow T. Interpretation of sulphur 2p XPS spectra in sulfide minerals by means of ab initio calculations. Surf Interface Anal. 2000;29(2):145–50.Google Scholar
  95. 95.
    Breunig HJ, Rösler R. Organoantimony compounds with element—element bonds. Coord Chem Rev. 1997;163:33–53.Google Scholar
  96. 96.
    Rabhi A, Kanzari M, Rezig B. Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Mater Lett. 2008;62(20):3576–8.Google Scholar
  97. 97.
    Klein A. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J Phys: Condens Matter. 2015;27(13):134201.Google Scholar
  98. 98.
    Burton LA, Walsh A. Band alignment in SnS thin-film solar cells: possible origin of the low conversion efficiency. Appl Phys Lett. 2013;102(13):132111.Google Scholar
  99. 99.
    Hinuma Y, Oba F, Kumagai Y, Tanaka I. Ionization potentials of (112) and (\( 11\bar{2} \)) facet surfaces of CuInSe2 and CuGaSe2. Phys Rev B. 2012;86(24):245433.Google Scholar
  100. 100.
    Burton LA, Whittles TJ, Hesp D, Linhart WM, Skelton JM, Hou B, Webster RF, O’Dowd G, Reece C, Cherns D, Fermin DJ, Veal TD, Dhanak VR, Walsh A. Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J Mater Chem A. 2016;4(4):1312–8.Google Scholar
  101. 101.
    Durose K, Asher SE, Jaegermann W, Levi D, McCandless BE, Metzger W, Moutinho H, Paulson PD, Perkins CL, Sites JR, Teeter G, Terheggen M. Physical characterization of thin-film solar cells. Prog Photovoltaics. 2004;12(2–3):177–217.Google Scholar
  102. 102.
    Sinsermsuksakul P, Hartman K, Bok Kim S, Heo J, Sun L, Hejin Park H, Chakraborty R, Buonassisi T, Gordon RG. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett. 2013;102(5):53901.Google Scholar
  103. 103.
    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS Solar cells using device simulation. Sol Energy Mater Sol Cells. 2001;67(1–4):83–8.Google Scholar
  104. 104.
    Baranowski LL, Christensen S, Welch AW, Lany S, Young M, Toberer ES, Zakutayev A. Conduction band position tuning and Ga-doping in (Cd, Zn)S alloy thin films. Mater Chem Front. 2017.Google Scholar
  105. 105.
    Ley L, Pollak RA, McFeely FR, Kowalczyk SP, Shirley DA. Total valence-band densities of states of III-V and II-VI compounds from X-ray photoemission spectroscopy. Phys Rev B. 1974;9(2):600–21.Google Scholar
  106. 106.
    Zhang Y, Yuan X, Sun X, Shih B-C, Zhang P, Zhang W. Comparative study of structural and electronic properties of Cu-based multinary semiconductors. Phys Rev B. 2011;84(7):75127.Google Scholar
  107. 107.
    Mann JB, Meek TL, Knight ET, Capitani JF, Allen LC. Configuration energies of the D-block elements. J Am Chem Soc. 2000;122(21):5132–7.Google Scholar
  108. 108.
    Mann JB, Meek TL, Allen LC. Configuration energies of the main group elements. J Am Chem Soc. 2000;122(12):2780–3.Google Scholar
  109. 109.
    Maeda T, Wada T. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds. Phys Status Solidi. 2009;6(5):1312–6.Google Scholar
  110. 110.
    Chen X-D, Chen L, Sun Q-Q, Zhou P, Zhang DW. Hybrid density functional theory study of Cu(In1−x Gax)Se2 band structure for solar cell application. AIP Adv. 2014;4(8):87118.Google Scholar
  111. 111.
    Bekaert J, Saniz R, Partoens B, Lamoen D. Native point defects in CuIn1−xGaxSe2: hybrid density functional calculations predict the origin of P- and N-type conductivity. Phys Chem Chem Phys. 2014;16(40):22299–308.Google Scholar
  112. 112.
    Wei SH, Zunger A. Calculated natural band offsets of all II-VI and III-V semiconductors: chemical trends and the role of cation D orbitals. Appl Phys Lett. 1998;72(16):2011–3.Google Scholar
  113. 113.
    Wei S-H, Zunger A. Role of metal D states in II–VI semiconductors. Phys Rev B. 1988;37(15):8958–81.Google Scholar
  114. 114.
    Xue D-J, Yang B, Yuan Z-K, Wang G, Liu X, Zhou Y, Hu L, Pan D, Chen S, Tang J. CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv Energy Mater. 2015;5(23):1501203.Google Scholar
  115. 115.
    Zakutayev A, Caskey CM, Fioretti AN, Ginley DS, Vidal J, Stevanovic V, Tea E, Lany S. Defect tolerant semiconductors for solar energy conversion. J Phys Chem Lett. 2014;5(7):1117–25.Google Scholar
  116. 116.
    Allen JP, Carey JJ, Walsh A, Scanlon DO, Watson GW. Electronic structures of antimony oxides. J Phys Chem C. 2013;117(28):14759–69.Google Scholar
  117. 117.
    Wood C, van Pelt B, Dwight A. The optical properties of amorphous and crystalline Sb2O3. Phys Status Solidi. 1972;54(2):701–6.Google Scholar
  118. 118.
    Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells. 2011;95(3):1001–4.Google Scholar
  119. 119.
    Rudmann D, Bilger G, Kaelin M, Haug FJ, Zogg H, Tiwari AN. Effects of NaF coevaporation on structural properties of Cu(In, Ga)Se2 thin films. Thin Solid Films. 2003;431–432(3):37–40.Google Scholar
  120. 120.
    Kranz L, Perrenoud J, Pianezzi F, Gretener C, Rossbach P, Buecheler S, Tiwari AN. Effect of sodium on recrystallization and photovoltaic properties of CdTe solar cells. Sol Energy Mater Sol Cells. 2012;105:213–9.Google Scholar
  121. 121.
    Barrie A, Street FJ. An auger and X-ray photoelectron spectroscopic study of sodium metal and sodium oxide. J Electron Spectros Relat Phenomena. 1975;7(1):1–31.Google Scholar
  122. 122.
    Würz R, Rusu M, Schedel-Niedrig T, Lux-Steiner MC, Bluhm H, Hävecker M, Kleimenov E, Knop-Gericke A, Schlögl R. In Situ X-ray photoelectron spectroscopy study of the oxidation of CuGaSe2. Surf Sci. 2005;580(1–3):80–94.Google Scholar
  123. 123.
    Zhu C, Osherov A, Panzer MJ. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim Acta. 2013;111:771–8.Google Scholar
  124. 124.
    Kronik L, Cahen D, Schock HW. Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Adv Mater. 1998;10(1):31–6.Google Scholar
  125. 125.
    Soukiassian P, Gentle TM, Bakshi MH, Hurych Z. SiO2-Si interface formation by catalytic oxidation using alkali metals and removal of the catalyst species. J Appl Phys. 1986;60(12):4339–41.Google Scholar
  126. 126.
    Starnberg HI, Soukiassian P, Hurych Z. Alkali-metal-promoted oxidation of the Si(100)2 × 1 surface: coverage dependence and nonlocality. Phys Rev B. 1989;39(17):12775–82.Google Scholar
  127. 127.
    Ding X, Dong G, Hou X, Wang X. The adsorption of oxygen on alkali metal covered GaAs (1 1 1) surfaces. Solid State Commun. 1987;61(6):391–3.Google Scholar
  128. 128.
    Lide DR. CRC Handbook of Chemistry and Physics 84th Edition; 2003.Google Scholar
  129. 129.
    Kemori N, Denholm W, Saunders S. Measurements of standard gibbs energies of formation of SbO, MgSbO and CaSbO by an Emf method. Can Metall Q. 1996;35(3):269–74.Google Scholar
  130. 130.
    Sundberg J, Lindblad R, Gorgoi M, Rensmo H, Jansson U, Lindblad A. Understanding the effects of sputter damage in W-S thin films by HAXPES. Appl Surf Sci. 2014;305:203–13.Google Scholar
  131. 131.
    Loeffler MJ, Dukes CA, Chang WY, McFadden LA, Baragiola RA. Laboratory simulations of sulfur depletion at eros. Icarus. 2008;195(2):622–9.Google Scholar
  132. 132.
    Doniach S, Sunjic M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C: Solid State Phys. 1970;3(2):285–91.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Stephenson Institute for Renewable EnergyUniversity of LiverpoolLiverpoolUK

Personalised recommendations