Experimental Methods

  • Thomas James WhittlesEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter introduces the experimental techniques used throughout this thesis, including the methods used to produce the studied materials, and also an introduction to the practices used to perform the characterisations.


Inverse Photoemission Spectroscopy (IPES) Movable Mirror Surface Science Studies Electronic Characterization Outgassing Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mizutori M, Yamada R. Semiconductors. In: Ullmann’s encyclopedia of industrial chemistry, vol. 9. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 245–60.Google Scholar
  2. 2.
    Stockbarger DC. The production of large single crystals of Lithium Fluoride. Rev Sci Instrum. 1936;7(3):133–6.Google Scholar
  3. 3.
    Schäfer H, Jacob H, Etzel K. Chemische Transportreaktionen. II. Die Verwendung Der Zerfallsgleichgewichte Der Eisen(II)- Und Nickel(II)-Halogenide Zum Metalltransport Im Temperaturgefälle. Zeitschrift für Anorg. und Allg Chemie. 1956;286(1–2):42–55.Google Scholar
  4. 4.
    Binnewies M, Glaum R, Schmidt M, Schmidt P. Chemical vapor transport reactions—a historical review. Zeitschrift für Anorg und Allg Chemie. 2013;639(2):219–29.Google Scholar
  5. 5.
    Mochizuki K, Masumoto K. Growth of CdTe single crystals by THM (Travelling Heater Method) and its repetition effect. Mater Lett. 1986;4(5–7):298–300.Google Scholar
  6. 6.
    Reig C, Paranchych YS, Muñoz-Sanjosé V. Crystal growth of HgSe by the cold travelling heater method. Cryst Growth Des. 2002;2(2):91–2.Google Scholar
  7. 7.
    Das S, Mandal K. Low-cost Cu2ZnSnS4 thin films for large-area high-efficiency heterojunction solar cells. In: 2012 38th IEEE photovoltaic specialists conference, vol. 4; 2012; p. 2668–73.Google Scholar
  8. 8.
    Kelly PJ, Arnell RD. Magnetron sputtering: a review of recent developments and applications. Vacuum. 2000;56(3):159–72.Google Scholar
  9. 9.
    Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells. 2015;132:499–506.Google Scholar
  10. 10.
    Willian de Souza Lucas F, Welch AW, Baranowski LL, Dippo PC, Mascaro LH, Zakutayev A. Thermal treatment improvement of CuSbS2 absorbers. In: 2015 IEEE 42nd photovoltaic specialist conference (PVSC); 2015; IEEE. p. 1–5.Google Scholar
  11. 11.
    de Souza Lucas FW, Welch AW, Baranowski LL, Dippo PC, Hempel H, Unold T, Eichberger R, Blank B, Rau U, Mascaro LH, Zakutayev A. Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility. J Phys Chem C. 2016;120(33):18377–85.Google Scholar
  12. 12.
    Rocket A. Physical vapor deposition. In: The materials science of semiconductors. Boston: Springer US; 2008. p. 505–72.Google Scholar
  13. 13.
    Schou J. Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film. Appl Surf Sci. 2009;255(10):5191–8.Google Scholar
  14. 14.
    Irvine SJC. Materials challenges: inorganic photovoltaic solar energy. In: Irvine SJC, editor. RSC energy and environment series. Cambridge: Royal Society of Chemistry; 2014.Google Scholar
  15. 15.
    Abermann S. Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol Energy. 2013;94:37–70.Google Scholar
  16. 16.
    Suryawanshi MP, Agawane GL, Bhosale SM, Shin SW, Patil PS, Kim JH, Moholkar AV. CZTS based thin film solar cells: a status review. Mater Technol. 2013;28(1–2):98–109.Google Scholar
  17. 17.
    Jung S, Sou A, Banger K, Ko D-H, Chow PCY, McNeill CR, Sirringhaus H. All-inkjet-printed, all-air-processed solar cells. Adv Energy Mater. 2014;4(14):1400432.Google Scholar
  18. 18.
    Taylor JF. Spin coating: an overview. Met Finish. 2001;99(1):16–21.Google Scholar
  19. 19.
    Mooney JB, Radding SB. Spray pyrolysis processing. Annu Rev Mater Sci. 1982;12(1):81–101.Google Scholar
  20. 20.
    Fulop GF, Taylor RM. Electrodeposition of semiconductors. Annu Rev Mater Sci. 1985;15(1):197–210.Google Scholar
  21. 21.
    Pathan HM, Lokhande CD. Deposition of metal chalcogenide thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method. Bull Mater Sci. 2004;27(2):85–111.Google Scholar
  22. 22.
    Xie M, Zhuang D, Zhao M, Li B, Cao M, Song J. Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target. Vacuum. 2014;101:146–50.Google Scholar
  23. 23.
    Shi C, Shi G, Chen Z, Yang P, Yao M. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Mater Lett. 2012;73:89–91.Google Scholar
  24. 24.
    Vaccarello D, Tapley A, Ding Z. Optimization of the Cu2ZnSnS4 nanocrystal recipe by means of photoelectrochemical measurements. Rsc Adv. 2013;3(11):3512–5.Google Scholar
  25. 25.
    Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Mehta BR. A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation. Sol Energy Mater Sol Cells. 2016;157:820–30.Google Scholar
  26. 26.
    Aono M, Yoshitake K, Miyazaki H. XPS depth profile study of CZTS thin films prepared by spray pyrolysis. Phys Status Solidi. 2013;10(7–8):1058–61.Google Scholar
  27. 27.
    Doona CJ, Stanbury DM. Equilibrium and Redox kinetics of Copper(II)-Thiourea complexes. Inorg Chem. 1996;35(11):3210–6.Google Scholar
  28. 28.
    Altamura G, Vidal J. Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem Mater. 2016;28(11):3540–63.Google Scholar
  29. 29.
    Ki W, Hillhouse HW. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Adv Energy Mater. 2011;1(5):732–5.Google Scholar
  30. 30.
    Nguyen VT, Nam D, Gansukh M, Park S-N, Sung S-J, Kim D-H, Kang J-K, Sai CD, Tran TH, Cheong H. Influence of sulfate residue on Cu2ZnSnS4 thin films prepared by direct solution method. Sol Energy Mater Sol Cells. 2015;136:113–9.Google Scholar
  31. 31.
    Park S-N, Sung S-J, Son D-H, Kim D-H, Gansukh M, Cheong H, Kang J-K. Solution-processed Cu2ZnSnS4 absorbers prepared by appropriate inclusion and removal of Thiourea for thin film solar cells. Rsc Adv. 2014;4(18):9118–25.Google Scholar
  32. 32.
    Hofmann S. Auger- and X-ray photoelectron spectroscopy in materials science, vol. 49; Springer series in surface sciences. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.Google Scholar
  33. 33.
    Woodruff DP, Delchar TA. 1—Introduction. In: Modern techniques of surface science. Cambridge: Cambridge University Press; 1994. p. 1–14.Google Scholar
  34. 34.
    Chung Y-W. Fundamental concepts in ultrahigh vacuum, surface preparation, and electron spectroscopy. In: Practical guide to surface science and spectroscopy. Elsevier; 2001. p. 1–22.Google Scholar
  35. 35.
    Hofmann P. Surface physics: an introduction. Philip Hofmann; 2013.Google Scholar
  36. 36.
    Weston GF. Ultrahigh vacuum practice. Cambridge: Butterworth & Co. Ltd; 1985.Google Scholar
  37. 37.
    Berman A. Water vapor in vacuum systems. Vacuum. 1996;47(4):327–32.Google Scholar
  38. 38.
    Henning Bubert HJ. Surface and thin film analysis (Bubert H, Jenett H, editors), vol. 4. Weinheim, FRG: Wiley-VCH Verlag GmbH; 2002.Google Scholar
  39. 39.
    Vickerman JC, Gilmore IS. In: Vickerman JC, Gilmore IS, editors. Surface analysis– the principal techniques. Chichester: Wiley; 2009.Google Scholar
  40. 40.
    Soriaga MP. Ultra-high vacuum techniques in the study of single-crystal electrode surfaces. Prog Surf Sci. 1992;39(4):325–443.Google Scholar
  41. 41.
    Steichen M, Djemour R, Gütay L, Guillot J, Siebentritt S, Dale PJ. Direct synthesis of single-phase P-type SnS by electrodeposition from a dicyanamide ionic liquid at high temperature for thin film solar cells. J Phys Chem C. 2013;117(9):4383–93.Google Scholar
  42. 42.
    Sundberg J, Lindblad R, Gorgoi M, Rensmo H, Jansson U, Lindblad A. Understanding the effects of sputter damage in W-S thin films by HAXPES. Appl Surf Sci. 2014;305:203–13.Google Scholar
  43. 43.
    Velásquez P, Ramos-Barrado JR, Leinen D. The fractured, polished and Ar+-sputtered surfaces of natural enargite: an XPS study. Surf Interface Anal. 2002;34(1):280–3.Google Scholar
  44. 44.
    Loeffler MJ, Dukes CA, Chang WY, McFadden LA, Baragiola RA. Laboratory simulations of sulfur depletion at Eros. Icarus. 2008;195(2):622–9.Google Scholar
  45. 45.
    Nossa A, Cavaleiro A. Chemical and physical characterization of C(N)-doped W-S sputtered films. J Mater Res. 2004;19(8):2356–65.Google Scholar
  46. 46.
    Woodruff DP, Delchar TA. Abbreviations. In: Modern techniques of surface science. Cambridge: Cambridge University Press; 1994. p. xiii–xiv.Google Scholar
  47. 47.
    Fadley CS. X-ray photoelectron spectroscopy: progress and perspectives. J Electron Spectros Relat Phenom. 2010;178–179:2–32.Google Scholar
  48. 48.
    Woodruff DP, Delchar TA. 3—Electron spectroscopies. In: Modern techniques of surface science. Cambridge: Cambridge University Press; 1994. p. 105–265.Google Scholar
  49. 49.
    Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal. 1979;1(1):2–11.Google Scholar
  50. 50.
    Rivière JC, Arlinghaus HF, Hutter H, Jenett H, Bauer P, Palmetshofer L. Surface and thin-film analysis, 2. Electron detection. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 335–76.Google Scholar
  51. 51.
    Kahn A. Fermi level, work function and vacuum level. Mater Horiz. 2016;3(1):7–10.Google Scholar
  52. 52.
    Cahen D, Kahn A. Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater. 2003;15(4):271–7.Google Scholar
  53. 53.
    Vij DR. In: Vij DR, editor. Handbook of applied solid state spectroscopy. Boston: Springer US; 2006.Google Scholar
  54. 54.
    Lindgren I. Chemical shifts in X-ray and photo-electron spectroscopy: a historical review. J. Electron Spectros. Relat. Phenom. 2004; 137–140 (SPEC. ISS.):59–71.Google Scholar
  55. 55.
    Chung Y-W. Photoelectron spectroscopy. In: Practical guide to surface science and spectroscopy. Elsevier; 2001. p. 45–67.Google Scholar
  56. 56.
    Woicik JC. Hard X-ray photoelectron spectroscopy (HAXPES). In: Woicik JC, editors. Springer series in surface sciences. Cham: Springer International Publishing; 2016.Google Scholar
  57. 57.
    Wu J-B, Lin Y-F, Wang J, Chang P-J, Tasi C-P, Lu C-C, Chiu H-T, Yang Y-W. Correlation between N 1s XPS binding energy and bond distance in metal Amido, Imido, and Nitrido complexes. Inorg Chem. 2003;42(15):4516–8.Google Scholar
  58. 58.
    Bagus PS, Ilton ES, Nelin CJ. The interpretation of XPS spectra: insights into materials properties. Surf Sci Rep. 2013;68(2):273–304.Google Scholar
  59. 59.
    Gaarenstroom SW, Winograd N. Initial and final state effects in the ESCA spectra of Cadmium and Silver Oxides. J Chem Phys. 1977;67(8):3500–6.Google Scholar
  60. 60.
    Major JD, Phillips LJ, Al Turkestani M, Bowen L, Whittles TJ, Dhanak VR, Durose K. P3HT as a pinhole blocking back contact for CdTe thin film solar cells. Sol Energy Mater Sol Cells. 2017;172:1–10.Google Scholar
  61. 61.
    Chung Y-W. Auger electron spectroscopy. In: Practical guide to surface science and spectroscopy. Elsevier; 2001. p. 23–43.Google Scholar
  62. 62.
    Ahmed A, Robertson CM, Steiner A, Whittles T, Ho A, Dhanak V, Zhang H. Cu(i)Cu(i)BTC, a microporous mixed-valence MOF via reduction of HKUST-1. RSC Adv. 2016;6(11):8902–5.Google Scholar
  63. 63.
    Citrin PH, Eisenberger PM, Marra WC, Åberg T, Utriainen J, Källne E. Linewidths in X-ray photoemission and X-ray emission spectroscopies: what do they measure? Phys Rev B. 1974;10(4):1762–5.Google Scholar
  64. 64.
    Brice JC. The lattice constants of a-quartz. J Mater Sci. 1980;15(1):161–7.Google Scholar
  65. 65.
    Zhang W. Angle-resolved photoemission spectroscopy. In: Photoemission spectroscopy on high temperature superconductor. Springer Theses. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 19–49.Google Scholar
  66. 66.
    Seah MP. Summary of ISO/TC 201 standard: VII ISO 15472:2001-surface chemical analysis-X-ray photoelectron spectrometers-calibration of energy scales. Surf Interface Anal. 2001;31(8):721–3.Google Scholar
  67. 67.
    Cros A. Charging effects in X-ray photoelectron spectroscopy. J Electron Spectros Relat Phenom. 1992;59(1):1–14.Google Scholar
  68. 68.
    Suzer S. Differential charging in X-ray photoelectron spectroscopy: a nuisance or a useful tool? Anal Chem. 2003;75(24):7026–9.Google Scholar
  69. 69.
    Baer DR, Engelhard MH, Gaspar DJ, Lea AS, Windisch CF. Use and limitations of electron flood gun control of surface potential during XPS: two non-homogeneous sample types. Surf Interface Anal. 2002;33(10–11):781–90.Google Scholar
  70. 70.
    Barr TL, Seal S. Nature of the use of adventitious carbon as a binding energy standard. J Vac Sci Technol A Vacuum Surf Film. 1995;13(3):1239.Google Scholar
  71. 71.
    Repoux M. Comparison of background removal methods for XPS. Surf Interface Anal. 1992;18(7):567–70.Google Scholar
  72. 72.
    Végh J. The Shirley Background Revised. J Electron Spectros Relat Phenom. 2006;151(3):159–64.Google Scholar
  73. 73.
    Tougaard S. Quantitative Analysis of the inelastic background in surface electron spectroscopy. Surf Interface Anal. 1988;11(9):453–72.Google Scholar
  74. 74.
    Weightman P. X-ray-excited auger and photoelectron spectroscopy. Reports Prog Phys. 2000;45(7):753–814.Google Scholar
  75. 75.
    Doniach S, Sunjic M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C: Solid State Phys. 1970;3(2):285–91.Google Scholar
  76. 76.
    Lebugle A, Axelsson U, Nyholm R, Mårtensson N. Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys Scr. 1981;23(5A):825–7.Google Scholar
  77. 77.
    Coster D, Kronig L, De R. New type of Auger effect and its influence on the X-ray spectrum. Physica. 1935;2(1–12):13–24.Google Scholar
  78. 78.
    Nyholm R, Martensson N, Lebugle A, Axelsson U. Auger and Coster-Kronig broadening effects in the 2p and 3p photoelectron spectra from the metals 22Ti-30Zn. J Phys F: Met Phys. 1981;11(8):1727–33.Google Scholar
  79. 79.
    Speckbacher M, Treu J, Whittles TJ, Linhart WM, Xu X, Saller K, Dhanak VR, Abstreiter G, Finley JJ, Veal TD, Koblmüller G. Direct measurements of fermi level pinning at the surface of intrinsically N-type InGaAs nanowires. Nano Lett. 2016;16(8):5135–42.Google Scholar
  80. 80.
    Wagner CD. Chemical shifts of Auger Lines, and the Auger parameter. Faraday Discuss Chem Soc. 1975;60:291.Google Scholar
  81. 81.
    Wagner CD. Auger parameter in electron spectroscopy for the identification of chemical species. Anal Chem. 1975;47(7):1201–3.Google Scholar
  82. 82.
    Wagner CD, Joshi A. The Auger parameter, its utility and advantages: a review. J Electron Spectros Relat Phenom. 1988;47:283–313.Google Scholar
  83. 83.
    Oswald S, Gonzalez-Elipe AR, Reiche R, Espinos JP, Martin A. Are measured values of the Auger parameter always independent of charging effects? Surf Interface Anal. 2003;35(12):991–7.Google Scholar
  84. 84.
    Fadley CS, Shirley DA. X-ray photoelectron spectroscopic study of Iron, Cobalt, Nickel, Copper, and Platinum. Phys Rev Lett. 1968;21(14):980–3.Google Scholar
  85. 85.
    Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of Gold. Phys Rev B. 1972;5(12):4709–14.Google Scholar
  86. 86.
    Shirley DA, Fadley CS. X-ray photoelectron spectroscopy in North America—the early years. J Electron Spectros Relat Phenom. 2004;137–140:43–58.Google Scholar
  87. 87.
    Ley L, Kowalczyk S, Pollak R, Shirley DA. X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands. Phys Rev Lett. 1972;29(16):1088–92.Google Scholar
  88. 88.
    Ley L, Pollak RA, McFeely FR, Kowalczyk SP, Shirley DA. Total valence-band densities of states of III-V and II-VI compounds from X-ray photoemission spectroscopy. Phys Rev B. 1974;9(2):600–21.Google Scholar
  89. 89.
    Pollak RA, Ley L, Kowalczyk S, Shirley DA, Joannopoulos JD, Chadi DJ, Cohen ML. X-ray photoemission valence-band spectra and theoretical valence-band densities of states for Ge, GaAs, and ZnSe. Phys Rev Lett. 1972;29(16):1103–5.Google Scholar
  90. 90.
    Yeh JJ, Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At Data Nucl Data Tables. 1985;32(1):1–155.Google Scholar
  91. 91.
    Fadley CS, Shirley DA. Electronic densities of states from X-ray photoelectron spectroscopy. J Res Natl Bur Stand Sect A Phys Chem. 1970;74A(4):543.Google Scholar
  92. 92.
    Li X, Zhang Z, Henrich VE. Inelastic electron background function for ultraviolet photoelectron spectra. J Electron Spectros Relat Phenom. 1993;63(3):253–65.Google Scholar
  93. 93.
    Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP. Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett. 1980;44(24):1620–3.Google Scholar
  94. 94.
    Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP. Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy. Phys Rev B. 1983;28(4):1965–77.Google Scholar
  95. 95.
    Eich D, Ortner K, Groh U, Chen ZH, Becker CR, Landwehr G, Fink R, Umbach E. Band discontinuity and band gap of MBE grown HgTe/CdTe (001) heterointerfaces studied by K-Resolved photoemission and inverse photoemission. Phys Status Solidi. 1999;261(1):261–8.Google Scholar
  96. 96.
    Waldrop JR, Kraut EA, Farley CW, Grant RW. Measurement of InP/In0.53Ga0.47As and In0.53Ga0.47As/In0.52Al0.48As heterojunction band offsets by X-ray photoemission spectroscopy. J Appl Phys. 1991;69(1):372.Google Scholar
  97. 97.
    Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R, Mittiga A. Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J Phys D Appl Phys. 2013;46(17):175101.Google Scholar
  98. 98.
    Waldrop JR, Grant RW. Measurement of AlN/GaN (0001) heterojunction band offsets by X-ray photoemission spectroscopy. Appl Phys Lett. 1996;68(20):2879.Google Scholar
  99. 99.
    List RS. Can photoemission measure valence-band discontinuities? J Vac Sci Technol B Microelectron Nanom Struct. 1988;6(4):1228.Google Scholar
  100. 100.
    Klein A. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J Phys: Condens Matter. 2015;27(13):134201.Google Scholar
  101. 101.
    Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion. Thin Solid Films. 2012;520(10):3721–8.Google Scholar
  102. 102.
    Schlaf R, Lang O, Pettenkofer C, Jaegermann W. Band lineup of layered semiconductor heterointerfaces prepared by van Der Waals epitaxy: charge transfer correction term for the electron affinity rule. J Appl Phys. 1999;85(5):2732–53.Google Scholar
  103. 103.
    Helander MG, Greiner MT, Wang ZB, Lu ZH. Pitfalls in measuring work function using photoelectron spectroscopy. Appl Surf Sci. 2010;256(8):2602–5.Google Scholar
  104. 104.
    Bär M, Weinhardt L, Heske C. Soft X-ray and electron spectroscopy: a unique “Tool Chest” to characterize the chemical and electronic properties of surfaces and interfaces. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 387–409.Google Scholar
  105. 105.
    Waldrop JR. Measurement of semiconductor heterojunction band discontinuities by X-ray photoemission spectroscopy. J. Vac Sci Technol A Vacuum Surf Film. 1985;3(3):835.Google Scholar
  106. 106.
    Chambers SA, Droubay T, Kaspar TC, Gutowski M. Experimental determination of valence band maxima for SrTiO3, TiO2, and SrO and the associated valence band offsets with Si(001). J Vac Sci Technol B Microelectron Nanom Struct. 2004;22(4):2205.Google Scholar
  107. 107.
    Smith GC. Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J Electron Spectros Relat Phenom. 2005;148(1):21–8.Google Scholar
  108. 108.
    von Barth U. Basic density-functional theory an overview. Phys Scr. 2004;T109:9.Google Scholar
  109. 109.
    Kryachko ES, Ludeña EV. Density functional theory: foundations reviewed. Phys Rep. 2014;544(2):123–239.Google Scholar
  110. 110.
    Cohen AJ, Mori-Sánchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012;112(1):289–320.Google Scholar
  111. 111.
    Burke K, Werschnik J, Gross EKU. Time-dependent density functional theory: past, present, and future. J Chem Phys. 2005;123(6):62206.Google Scholar
  112. 112.
    Jones RO. Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys. 2015;87(3):897–923.Google Scholar
  113. 113.
    Gremlich H-U. Infrared and Raman spectroscopy. In: Ullmann’s encyclopedia of industrial chemistry, vol. 21. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000; p. 85–138.Google Scholar
  114. 114.
    Griffiths PR, de Haseth JA. Fourier transform infrared spectrometry. Hoboken: Wiley; 2007.Google Scholar
  115. 115.
    Ghezzi C, Magnanini R, Parisini A, Rotelli B, Tarricone L, Bosacchi A, Franchi S. Optical absorption near the fundamental absorption edge in GaSb. Phys Rev B. 1995;52(3):1463–6.Google Scholar
  116. 116.
    Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous Germanium. Phys Status Solidi. 1966;15(2):627–37.Google Scholar
  117. 117.
    Tauc J. Optical properties and electronic structure of Amorphous Ge and Si. Mater Res Bull. 1968;3(1):37–46.Google Scholar
  118. 118.
    Davis EA, Mott NF. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22(179):0903–22.Google Scholar
  119. 119.
    Viezbicke BD, Patel S, Davis BE, Birnie DP. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi. 2015;252(8):1700–10.Google Scholar
  120. 120.
    Ünlü H. A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors. Solid State Electron. 1992;35(9):1343–52.Google Scholar
  121. 121.
    Varshni YP. Temperature dependence of energy gap in semiconductors. Physica. 1967;34(1):149.Google Scholar
  122. 122.
    Sarswat PK, Free ML. A study of energy band gap versus temperature for Cu2ZnSnS4 thin films. Phys B Condens Matter. 2012;407(1):108–11.Google Scholar
  123. 123.
    Lautenschlager P, Garriga M, Logothetidis S, Cardona M. Interband critical points of GaAs and their temperature dependence. Phys Rev B. 1987;35(17):9174–89.Google Scholar
  124. 124.
    Schorr S, Stephan C, Törndahl T, Mainz R. X-ray and neutron diffraction on materials for thin-film solar cells. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 347–63.Google Scholar
  125. 125.
    Paulus EF, Gieren A. Structure analysis by diffraction. In: Ullmann’s encyclopedia of industrial chemistry, vol. 21. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2001. p. 85–138.Google Scholar
  126. 126.
    Cullity BD. Elements of X-ray diffraction. Reading: Addison-Wesley Publishing Company; 1956.Google Scholar
  127. 127.
    Chapuis G, Schoeni N. Towards a web-based interactive environment for the teaching of crystallography. Acta Crystallogr Sect A: Found Crystallogr. 2005;61(a1):c121–2.Google Scholar
  128. 128.
    Álvarez-García J, Izquierdo-Roca V, Pérez-Rodríguez A. Raman spectroscopy on thin films for solar cells. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 365–86.Google Scholar
  129. 129.
    Lund EA, Du H, Hlaing OO WM, Teeter G, Scarpulla MA. Investigation of combinatorial coevaporated thin film Cu2ZnSnS4 (II): beneficial cation arrangement in Cu-rich growth. J Appl Phys. 2014; 115(17):173503.Google Scholar
  130. 130.
    Abou-Ras D, Nichterwitz M, Romero MJ, Schmidt SS. Electron microscopy on thin films for solar cells. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 299–345.Google Scholar
  131. 131.
    Hoffmann V, Klemm D, Efimova V, Venzago C, Rockett Aa, Wirth T, Nunney T, Kaufmann Ca, Caballero R. Elemental distribution profiling of thin films for solar cells. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011; p. 411–48.Google Scholar
  132. 132.
    Czanderna AW, Madey TE, Powell CJ. Beam effects, surface topography, and depth profiling in surface analysis. In: Czanderna AW, Madey TE, Powell CJ, editors. Methods of surface characterization. Boston: Kluwer Academic Publishers; 2002 Vol. 5.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Stephenson Institute for Renewable EnergyUniversity of LiverpoolLiverpoolUK

Personalised recommendations