• Thomas James WhittlesEmail author
Part of the Springer Theses book series (Springer Theses)


We, as humans, are at a unique point in history. Throughout the ages, mankind has predicted and prophesied its own demise, but never yet has this come to fruition. At present, we have reached such a level of technological advancement that we are able to predict how this will happen.


  1. 1.
    Dyson L, Kleban M, Susskind L. Disturbing implications of a cosmological constant. J High Energy Phys. 2002;2002(10):011.Google Scholar
  2. 2.
    Matheny JG. Reducing the risk of human extinction. Risk Anal. 2007;27(5):1335–44.Google Scholar
  3. 3.
    Sagan C. Nuclear war and climatic catastrophe: some policy implications. Foreign Aff. 1983;62(2):257.Google Scholar
  4. 4.
    International Energy Agency (IEA). World Energy Outlook 2012; 2012.Google Scholar
  5. 5.
    International Energy Agency (IEA). Key World Energy Statistics 2016; 2016.Google Scholar
  6. 6.
    U.S. Energy Information Administration (EIA). International Energy Outlook 2016; 2016.Google Scholar
  7. 7.
    Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399(6735):429–36.Google Scholar
  8. 8.
    Irvine SJC. Materials challenges: inorganic photovoltaic solar energy. In: Irvine SJC, editor. RSC energy and environment series. Cambridge: Royal Society of Chemistry; 2014.Google Scholar
  9. 9.
    “renewable, Adj. and N.”. OED Online; Oxford University Press, 2017.Google Scholar
  10. 10.
    Horlick-Jones T, Prades A, Espluga J. Investigating the degree of “stigma” associated with nuclear energy technologies: a cross-cultural examination of the case of fusion power. Public Underst Sci. 2012;21(5):514–33.Google Scholar
  11. 11.
    Taylor JJ. Improved and safer nuclear power. Science. 1989;244(4902):318–25.Google Scholar
  12. 12.
    Johnstone P, Sovacool BK, MacKerron G, Stirling A. Nuclear power: serious risks. Science. 2016;354(6316):1112.Google Scholar
  13. 13.
    International Energy Agency (IEA). World Energy Outlook 2016; 2016.Google Scholar
  14. 14.
    Hermann WA. Quantifying global exergy resources. Energy. 2006;31(12):1685–702.Google Scholar
  15. 15.
    Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulović V. Pathways for solar photovoltaics. Energy Environ Sci. 2015;8(4):1200–19.Google Scholar
  16. 16.
    Pfisterer, F. Photovoltaic cells. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 135–54.Google Scholar
  17. 17.
    Pickart SJ. Physical properties of sulfide materials. Mineral Soc Am Spec Pap. 1970;3:145–53.Google Scholar
  18. 18.
    Mizutori M, Yamada R. Semiconductors. In: Ullmann’s encyclopedia of industrial chemistry, vol. 9. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 245–60.Google Scholar
  19. 19.
    Goodman CHL. The prediction of semiconducting properties in inorganic compounds. J Phys Chem Solids. 1958;6(4):305–14.Google Scholar
  20. 20.
    Vidal J, Lany S, D’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett. 2012;100(3):32104.Google Scholar
  21. 21.
    Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater. 2013;25(24):4908–16.Google Scholar
  22. 22.
    Becquerel E. Memoire Sur Les Effets Electriques Produits Sous L’influence Des Rayons Solaires. C R Hebd Seances Acad Sci. 1839;9:561–7.Google Scholar
  23. 23.
    Conibeer G. Third-generation photovoltaics. Mater Today. 2007;10(11):42–50.Google Scholar
  24. 24.
    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Sol Energy Mater Sol Cells. 2001;67(1–4):83–8.Google Scholar
  25. 25.
    Bär M, Weinhardt L, Heske C. Soft X-ray and electron spectroscopy: a unique “tool chest” to characterize the chemical and electronic properties of surfaces and interfaces. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 387–409.Google Scholar
  26. 26.
    Zakutayev A, Caskey CM, Fioretti AN, Ginley DS, Vidal J, Stevanovic V, Tea E, Lany S. Defect tolerant semiconductors for solar energy conversion. J Phys Chem Lett. 2014;5(7):1117–25.Google Scholar
  27. 27.
    Ganose AM, Savory CN, Scanlon DO. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem Commun. 2017;53(1):20–44.Google Scholar
  28. 28.
    Yu L, Kokenyesi RS, Keszler DA, Zunger A. Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater. 2013;3(1):43–8.Google Scholar
  29. 29.
    Loferski JJ. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys. 1956;27(7):777–84.Google Scholar
  30. 30.
    Shockley W, Queisser HJ. Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys. 1961;32(3):510–9.Google Scholar
  31. 31.
    Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy. 2016;130:139–47.Google Scholar
  32. 32.
    Walsh A, Chen S, Wei S-H, Gong X-G. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater. 2012;2(4):400–9.Google Scholar
  33. 33.
    Schorr S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films. 2007;515(15):5985–91.Google Scholar
  34. 34.
    Brendel R, Werner JH, Queisser HJ. Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol Energy Mater Sol Cells. 1996;41–42:419–25.Google Scholar
  35. 35.
    Adams WG, Day RE. The action of light on selenium. Proc R Soc London. 1876;25(171–178):113–7.Google Scholar
  36. 36.
    Fritts CE. On the Fritts selenium cells and batteries. J Franklin Inst. 1885;119(3):221–32.Google Scholar
  37. 37.
    Siemens W. On the electro motive action of illuminated selenium, discovered by Mr. Fritts, of New York. J Franklin Inst. 1885;119(6):453–IN6.Google Scholar
  38. 38.
    Fritts CE. On a new form of selenium cell, and some electrical discoveries made by its use. Am J Sci. 1883;s3-26(156):465–72.Google Scholar
  39. 39.
    Reynolds DC, Leies G, Antes LL, Marburger RE. Photovoltaic effect in cadmium sulfide. Phys Rev. 1954;96(2):533–4.Google Scholar
  40. 40.
    Chapin DM, Fuller CS, Pearson GL. A new silicon P-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954;25(5):676–7.Google Scholar
  41. 41.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ho-Baillie AWY. Solar cell efficiency tables (version 49). Prog Photovoltaics Res Appl. 2017;25(1):3–13.Google Scholar
  42. 42.
    Wang TY, Lin YC, Tai CY, Fei CC, Tseng MY, Lan CW. Recovery of silicon from kerf loss slurry waste for photovoltaic applications. Prog Photovoltaics Res Appl. 2009;17(3):155–63.Google Scholar
  43. 43.
    Chittick RC, Alexander JH, Sterling HF. The preparation and properties of amorphous silicon. J Electrochem Soc. 1969;116(1):77.Google Scholar
  44. 44.
    Spear WE, Le Comber PG. Investigation of the localised state distribution in amorphous Si films. J Non Cryst Solids. 1972;10:727–38.Google Scholar
  45. 45.
    Carlson DE, Wronski CR. Amorphous silicon solar cell. Appl Phys Lett. 1976;28(11):671–3.Google Scholar
  46. 46.
    Hall RB, Birkmire RW, Phillips JE, Meakin JD. Thin-film polycrystalline Cu2S/Cd1-xZnxS solar cells of 10% efficiency. Appl Phys Lett. 1981;38(11):925–6.Google Scholar
  47. 47.
    Vanhoecke E, Burgelman M. Reactive sputtering of Thin Cu2S films for application in solar cells. Thin Solid Films. 1984;112:97–106.Google Scholar
  48. 48.
    Partain LD, Schneider RA, Donaghey LF, McLeod PS. Surface chemistry of CuxS and CuxS/CdS determined from x-ray photoelectron spectroscopy. J Appl Phys. 1985;57(11):5056.Google Scholar
  49. 49.
    Rakhshani AE. Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid State Electron. 1986;29(1):7–17.Google Scholar
  50. 50.
    Rai BP. Cu2O solar cells: a review. Sol Cells. 1988;25(3):265–72.Google Scholar
  51. 51.
    Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Büker K, Bronold M, Höpfner C, Tributsch H. Iron disulfide for solar energy conversion. Sol Energy Mater Sol Cells. 1993;29(4):289–370.Google Scholar
  52. 52.
    Cusano DA. CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid State Electron. 1963;6(3):217–32.Google Scholar
  53. 53.
    Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells. 2015;132:499–506.Google Scholar
  54. 54.
    Wagner S, Shay JL, Migliorato P, Kasper HM. CuInSe2/CdS heterojunction photovoltaic detectors. Appl Phys Lett. 1974;25(8):434–5.Google Scholar
  55. 55.
    Kazmerski LL, White FR, Morgan GK. Thin-film CuInSe2/CdS heterojunction solar cells. Appl Phys Lett. 1976;29(4):268–70.Google Scholar
  56. 56.
    Tinoco T, Rincón C, Quintero M, Pérez GS. Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys. Phys Status Solidi. 1991;124(2):427–34.Google Scholar
  57. 57.
    Fraunhofer ISE. Photovoltaics Report; 2016.Google Scholar
  58. 58.
    Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL. CdTe thin film solar cells: device and technology issues. Sol Energy. 2004;77(6):823–30.Google Scholar
  59. 59.
    Wu X. High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy. 2004;77(6):803–14.Google Scholar
  60. 60.
    Bosio A, Menossi D, Mazzamuto S, Romeo N. Manufacturing of CdTe thin film photovoltaic modules. Thin Solid Films. 2011;519(21):7522–5.Google Scholar
  61. 61.
    Schulte-Schrepping K-H, Piscator M. Cadmium and cadmium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 121–45.Google Scholar
  62. 62.
    Fthenakis VM, Moskowitz PD. Photovoltaics: environmental, health and safety issues and perspectives. Prog Photovoltaics Res Appl. 2000;8(1):27–38.Google Scholar
  63. 63.
    Fthenakis V. Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev. 2009;13(9):2746–50.Google Scholar
  64. 64.
    Fthenakis VM. Life cycle impact analysis of cadmium in CdTe PV production. Renew Sustain Energy Rev. 2004;8(4):303–34.Google Scholar
  65. 65.
    U.S. Geological Survey. Mineral Commodity Summaries 2017; 2017.Google Scholar
  66. 66.
    Knockaert G. Tellurium and tellurium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 115. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 5–6.Google Scholar
  67. 67.
    Candelise C, Speirs JF, Gross RJK. Materials availability for thin film (TF) PV technologies development: a real concern? Renew Sustain Energy Rev. 2011;15(9):4972–81.Google Scholar
  68. 68.
    Langner BE. Selenium and selenium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 9. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 245–60.Google Scholar
  69. 69.
    Cerwenka EA, Cooper WC. Toxicology of selenium and tellurium and their compounds. Arch Environ Heal An Int J. 1961;3(2):189–200.Google Scholar
  70. 70.
    Phipps G, Mikolajczak C, Guckes T. Indium and gallium: long-term supply. Renew Energy Focus. 2008;9(4):56–9.Google Scholar
  71. 71.
    Delbos S. Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics. 2012;3:35004.Google Scholar
  72. 72.
    Henry CH. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys. 1980;51(8):4494–500.Google Scholar
  73. 73.
    Mazzer M, Barnham KWJ, Ballard IM, Bessiere A, Ioannides A, Johnson DC, Lynch MC, Tibbits TND, Roberts JS, Hill G, Calder C. Progress in quantum well solar cells. Thin Solid Films. 2006;511–512:76–83.Google Scholar
  74. 74.
    Ross RT, Nozik AJ. Efficiency of hot-carrier solar energy converters. J Appl Phys. 1982;53(5):3813–8.Google Scholar
  75. 75.
    Lide DR. CRC handbook of chemistry and physics. 85th ed. Boca Raton, FL: CRC Press; 2004.Google Scholar
  76. 76.
    Wadia C, Alivisatos AP, Kammen DM. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol. 2009;43(6):2072–7.Google Scholar
  77. 77.
    Andersson BA. Materials availability for large-scale thin-film photovoltaics. Prog Photovoltaics Res Appl. 2000;8(1):61–76.Google Scholar
  78. 78.
    Andersson B, Azar C, Holmberg J, Karlsson S. Material constraints for thin-film solar cells. Energy. 1998;23(5):407–11.Google Scholar
  79. 79.
    Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renew Energy. 2008;33(2):180–5.Google Scholar
  80. 80.
    Makovicky E. Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochemistry. 2006;61(1):7–125.Google Scholar
  81. 81.
    Nehb W, Vydra K. Sulfur. In: Ullmann’s encyclopedia of industrial chemistry, vol. 1. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 1–32.Google Scholar
  82. 82.
    Dittrich H, Stadler A, Topa D, Schimper H-J, Basch A. Progress in sulfosalt research. Phys status solidi. 2009;206(5):1034–41.Google Scholar
  83. 83.
    Lossin A. Copper. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2001. p. 467–97.Google Scholar
  84. 84.
    Zhang J, Richardson HW. Copper compounds. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 1–31.Google Scholar
  85. 85.
    Dufton JTR, Walsh A, Panchmatia PM, Peter LM, Colombara D, Islam MS. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys Chem Chem Phys. 2012;14(20):7229.Google Scholar
  86. 86.
    Schwab B, Ruh A, Manthey J, Drosik M. Zinc. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1–25.Google Scholar
  87. 87.
    Graf GG. Tin, tin alloys, and tin compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 37. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 119–26.Google Scholar
  88. 88.
    Dittrich H, Bieniok A, Brendel U, Grodzicki M, Topa D. Sulfosalts—a new class of compound semiconductors for photovoltaic applications. Thin Solid Films. 2007;515(15):5745–50.Google Scholar
  89. 89.
    Wernick JH, Benson KE. New semiconducting ternary compounds. J Phys Chem Solids. 1957;3(1–2):157–9.Google Scholar
  90. 90.
    Grund SC, Hanusch K, Breunig HJ, Wolf HU. Antimony and antimony compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Wiley-VCH Verlag GmbH & Co. KGaA: Germany; 2006. p. 41–93.Google Scholar
  91. 91.
    Krüger J, Winkler P, Lüderitz E, Lück M, Wolf HU. Bismuth, bismuth alloys, and bismuth compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. p. 121–45.Google Scholar
  92. 92.
    Gerein NJ, Haber JA. One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem Mater. 2006;18(26):6297–302.Google Scholar
  93. 93.
    Chen CJ. Physics of solar energy. Hoboken: Wiley; 2011.Google Scholar
  94. 94.
    ASTM International. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM G173-03(2012). West Conshohocken 2012.Google Scholar
  95. 95.
    International Energy Agency (IEA). World Energy Outlook 2014; 2014.Google Scholar
  96. 96.
    Jacobsson S, Lauber V. The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy. 2006;34(3):256–76.Google Scholar
  97. 97.
    Jorant C. The implications of Fukushima. Bull At Sci. 2011;67(4):14–7.Google Scholar
  98. 98.
    Banu S, Ahn SJ, Ahn SK, Yoon K, Cho A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells. 2016;151:14–23.Google Scholar
  99. 99.
    Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater. 2014;4(15):1400496.Google Scholar
  100. 100.
    Sun K, Yan C, Liu F, Huang J, Zhou F, Stride JA, Green M, Hao X. Over 9% efficient Kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1-XCdXS buffer layer. Adv Energy Mater. 2016;6(12):1600046.Google Scholar
  101. 101.
    Šúri M, Huld TA, Dunlop ED, Ossenbrink HA. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy. 2007;81(10):1295–305.Google Scholar
  102. 102.
    Huld T, Müller R, Gambardella A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol Energy. 2012;86(6):1803–15.Google Scholar
  103. 103.
    Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Photovoltaic materials—present efficiencies and future challenges. Science. 2016;352(6283):307.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Stephenson Institute for Renewable EnergyUniversity of LiverpoolLiverpoolUK

Personalised recommendations