Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We, as humans, are at a unique point in history. Throughout the ages, mankind has predicted and prophesied its own demise, but never yet has this come to fruition. At present, we have reached such a level of technological advancement that we are able to predict how this will happen.

One thing I feel sure of… is that the human race must finally utilise direct sun power or revert to barbarism.

Frank Schuman, Solar Energy Pioneer, 1913

The original version of this chapter was revised: Table was reformatted and the references to the table were cited. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-91665-1_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An apologetic term used for non-renewable resources when they are not used to generate electricity.

  2. 2.

    Which costs further energy.

  3. 3.

    Which is environmentally damaging.

  4. 4.

    See Fig. 1.1.

  5. 5.

    “Of a natural resource or source of energy: capable of being replenished, not depleted by its utilization” [9].

  6. 6.

    Calculations for this can be found in Appendix A, Sect. A.1.

  7. 7.

    See Fig. 1.2a.

  8. 8.

    E.g. P in Si.

  9. 9.

    E.g. B in Si.

  10. 10.

    See Fig. 1.5a.

  11. 11.

    See Fig. 1.5c.

  12. 12.

    See Fig. 1.5b.

  13. 13.

    E.g. silicon with n- and p-type doping.

  14. 14.

    See Fig. 1.5b.

  15. 15.

    See the bottom panels of Fig. 1.8.

  16. 16.

    See (1) and (2) in Fig. 1.7.

  17. 17.

    Utilising a pn junction.

  18. 18.

    ~1.0 eV [56].

  19. 19.

    ~1.1 to 1.2 eV.

  20. 20.

    See Fig. 1.13.

  21. 21.

    Especially its use as a replacement for lead in solder [92].

  22. 22.

    Chapters 3 and 4, respectively.

  23. 23.

    ASTM International standard (G173–03) [94].

  24. 24.

    CZTSSe contains selenium and is not of interest here.

  25. 25.

    See Fig. 1.22a.

  26. 26.

    None have yet been reported, but it is assumed to be 1% for these calculations.

  27. 27.

    See Fig. 1.22b.

  28. 28.

    See Sect. 1.4.

References

  1. Dyson L, Kleban M, Susskind L. Disturbing implications of a cosmological constant. J High Energy Phys. 2002;2002(10):011.

    Google Scholar 

  2. Matheny JG. Reducing the risk of human extinction. Risk Anal. 2007;27(5):1335–44.

    Google Scholar 

  3. Sagan C. Nuclear war and climatic catastrophe: some policy implications. Foreign Aff. 1983;62(2):257.

    Google Scholar 

  4. International Energy Agency (IEA). World Energy Outlook 2012; 2012.

    Google Scholar 

  5. International Energy Agency (IEA). Key World Energy Statistics 2016; 2016.

    Google Scholar 

  6. U.S. Energy Information Administration (EIA). International Energy Outlook 2016; 2016.

    Google Scholar 

  7. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399(6735):429–36.

    CAS  Google Scholar 

  8. Irvine SJC. Materials challenges: inorganic photovoltaic solar energy. In: Irvine SJC, editor. RSC energy and environment series. Cambridge: Royal Society of Chemistry; 2014.

    Google Scholar 

  9. “renewable, Adj. and N.”. OED Online; Oxford University Press, 2017.

    Google Scholar 

  10. Horlick-Jones T, Prades A, Espluga J. Investigating the degree of “stigma” associated with nuclear energy technologies: a cross-cultural examination of the case of fusion power. Public Underst Sci. 2012;21(5):514–33.

    Google Scholar 

  11. Taylor JJ. Improved and safer nuclear power. Science. 1989;244(4902):318–25.

    CAS  Google Scholar 

  12. Johnstone P, Sovacool BK, MacKerron G, Stirling A. Nuclear power: serious risks. Science. 2016;354(6316):1112.

    Google Scholar 

  13. International Energy Agency (IEA). World Energy Outlook 2016; 2016.

    Google Scholar 

  14. Hermann WA. Quantifying global exergy resources. Energy. 2006;31(12):1685–702.

    CAS  Google Scholar 

  15. Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulović V. Pathways for solar photovoltaics. Energy Environ Sci. 2015;8(4):1200–19.

    CAS  Google Scholar 

  16. Pfisterer, F. Photovoltaic cells. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 135–54.

    Google Scholar 

  17. Pickart SJ. Physical properties of sulfide materials. Mineral Soc Am Spec Pap. 1970;3:145–53.

    Google Scholar 

  18. Mizutori M, Yamada R. Semiconductors. In: Ullmann’s encyclopedia of industrial chemistry, vol. 9. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 245–60.

    Google Scholar 

  19. Goodman CHL. The prediction of semiconducting properties in inorganic compounds. J Phys Chem Solids. 1958;6(4):305–14.

    CAS  Google Scholar 

  20. Vidal J, Lany S, D’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett. 2012;100(3):32104.

    Google Scholar 

  21. Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater. 2013;25(24):4908–16.

    CAS  Google Scholar 

  22. Becquerel E. Memoire Sur Les Effets Electriques Produits Sous L’influence Des Rayons Solaires. C R Hebd Seances Acad Sci. 1839;9:561–7.

    Google Scholar 

  23. Conibeer G. Third-generation photovoltaics. Mater Today. 2007;10(11):42–50.

    CAS  Google Scholar 

  24. Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Sol Energy Mater Sol Cells. 2001;67(1–4):83–8.

    CAS  Google Scholar 

  25. Bär M, Weinhardt L, Heske C. Soft X-ray and electron spectroscopy: a unique “tool chest” to characterize the chemical and electronic properties of surfaces and interfaces. In: Advanced characterization techniques for thin film solar cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 387–409.

    Google Scholar 

  26. Zakutayev A, Caskey CM, Fioretti AN, Ginley DS, Vidal J, Stevanovic V, Tea E, Lany S. Defect tolerant semiconductors for solar energy conversion. J Phys Chem Lett. 2014;5(7):1117–25.

    CAS  Google Scholar 

  27. Ganose AM, Savory CN, Scanlon DO. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem Commun. 2017;53(1):20–44.

    CAS  Google Scholar 

  28. Yu L, Kokenyesi RS, Keszler DA, Zunger A. Inverse design of high absorption thin-film photovoltaic materials. Adv Energy Mater. 2013;3(1):43–8.

    CAS  Google Scholar 

  29. Loferski JJ. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys. 1956;27(7):777–84.

    CAS  Google Scholar 

  30. Shockley W, Queisser HJ. Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys. 1961;32(3):510–9.

    CAS  Google Scholar 

  31. Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy. 2016;130:139–47.

    Google Scholar 

  32. Walsh A, Chen S, Wei S-H, Gong X-G. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater. 2012;2(4):400–9.

    CAS  Google Scholar 

  33. Schorr S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films. 2007;515(15):5985–91.

    CAS  Google Scholar 

  34. Brendel R, Werner JH, Queisser HJ. Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol Energy Mater Sol Cells. 1996;41–42:419–25.

    Google Scholar 

  35. Adams WG, Day RE. The action of light on selenium. Proc R Soc London. 1876;25(171–178):113–7.

    Google Scholar 

  36. Fritts CE. On the Fritts selenium cells and batteries. J Franklin Inst. 1885;119(3):221–32.

    Google Scholar 

  37. Siemens W. On the electro motive action of illuminated selenium, discovered by Mr. Fritts, of New York. J Franklin Inst. 1885;119(6):453–IN6.

    Google Scholar 

  38. Fritts CE. On a new form of selenium cell, and some electrical discoveries made by its use. Am J Sci. 1883;s3-26(156):465–72.

    Google Scholar 

  39. Reynolds DC, Leies G, Antes LL, Marburger RE. Photovoltaic effect in cadmium sulfide. Phys Rev. 1954;96(2):533–4.

    CAS  Google Scholar 

  40. Chapin DM, Fuller CS, Pearson GL. A new silicon P-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954;25(5):676–7.

    CAS  Google Scholar 

  41. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ho-Baillie AWY. Solar cell efficiency tables (version 49). Prog Photovoltaics Res Appl. 2017;25(1):3–13.

    Google Scholar 

  42. Wang TY, Lin YC, Tai CY, Fei CC, Tseng MY, Lan CW. Recovery of silicon from kerf loss slurry waste for photovoltaic applications. Prog Photovoltaics Res Appl. 2009;17(3):155–63.

    Google Scholar 

  43. Chittick RC, Alexander JH, Sterling HF. The preparation and properties of amorphous silicon. J Electrochem Soc. 1969;116(1):77.

    CAS  Google Scholar 

  44. Spear WE, Le Comber PG. Investigation of the localised state distribution in amorphous Si films. J Non Cryst Solids. 1972;10:727–38.

    Google Scholar 

  45. Carlson DE, Wronski CR. Amorphous silicon solar cell. Appl Phys Lett. 1976;28(11):671–3.

    CAS  Google Scholar 

  46. Hall RB, Birkmire RW, Phillips JE, Meakin JD. Thin-film polycrystalline Cu2S/Cd1-xZnxS solar cells of 10% efficiency. Appl Phys Lett. 1981;38(11):925–6.

    CAS  Google Scholar 

  47. Vanhoecke E, Burgelman M. Reactive sputtering of Thin Cu2S films for application in solar cells. Thin Solid Films. 1984;112:97–106.

    CAS  Google Scholar 

  48. Partain LD, Schneider RA, Donaghey LF, McLeod PS. Surface chemistry of CuxS and CuxS/CdS determined from x-ray photoelectron spectroscopy. J Appl Phys. 1985;57(11):5056.

    CAS  Google Scholar 

  49. Rakhshani AE. Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid State Electron. 1986;29(1):7–17.

    CAS  Google Scholar 

  50. Rai BP. Cu2O solar cells: a review. Sol Cells. 1988;25(3):265–72.

    CAS  Google Scholar 

  51. Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Büker K, Bronold M, Höpfner C, Tributsch H. Iron disulfide for solar energy conversion. Sol Energy Mater Sol Cells. 1993;29(4):289–370.

    CAS  Google Scholar 

  52. Cusano DA. CdTe solar cells and photovoltaic heterojunctions in II–VI compounds. Solid State Electron. 1963;6(3):217–32.

    CAS  Google Scholar 

  53. Welch AW, Zawadzki PP, Lany S, Wolden CA, Zakutayev A. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol Energy Mater Sol Cells. 2015;132:499–506.

    CAS  Google Scholar 

  54. Wagner S, Shay JL, Migliorato P, Kasper HM. CuInSe2/CdS heterojunction photovoltaic detectors. Appl Phys Lett. 1974;25(8):434–5.

    CAS  Google Scholar 

  55. Kazmerski LL, White FR, Morgan GK. Thin-film CuInSe2/CdS heterojunction solar cells. Appl Phys Lett. 1976;29(4):268–70.

    CAS  Google Scholar 

  56. Tinoco T, Rincón C, Quintero M, Pérez GS. Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys. Phys Status Solidi. 1991;124(2):427–34.

    CAS  Google Scholar 

  57. Fraunhofer ISE. Photovoltaics Report; 2016.

    Google Scholar 

  58. Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL. CdTe thin film solar cells: device and technology issues. Sol Energy. 2004;77(6):823–30.

    CAS  Google Scholar 

  59. Wu X. High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy. 2004;77(6):803–14.

    CAS  Google Scholar 

  60. Bosio A, Menossi D, Mazzamuto S, Romeo N. Manufacturing of CdTe thin film photovoltaic modules. Thin Solid Films. 2011;519(21):7522–5.

    CAS  Google Scholar 

  61. Schulte-Schrepping K-H, Piscator M. Cadmium and cadmium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 121–45.

    Google Scholar 

  62. Fthenakis VM, Moskowitz PD. Photovoltaics: environmental, health and safety issues and perspectives. Prog Photovoltaics Res Appl. 2000;8(1):27–38.

    CAS  Google Scholar 

  63. Fthenakis V. Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev. 2009;13(9):2746–50.

    CAS  Google Scholar 

  64. Fthenakis VM. Life cycle impact analysis of cadmium in CdTe PV production. Renew Sustain Energy Rev. 2004;8(4):303–34.

    CAS  Google Scholar 

  65. U.S. Geological Survey. Mineral Commodity Summaries 2017; 2017.

    Google Scholar 

  66. Knockaert G. Tellurium and tellurium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 115. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 5–6.

    Google Scholar 

  67. Candelise C, Speirs JF, Gross RJK. Materials availability for thin film (TF) PV technologies development: a real concern? Renew Sustain Energy Rev. 2011;15(9):4972–81.

    CAS  Google Scholar 

  68. Langner BE. Selenium and selenium compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 9. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 245–60.

    Google Scholar 

  69. Cerwenka EA, Cooper WC. Toxicology of selenium and tellurium and their compounds. Arch Environ Heal An Int J. 1961;3(2):189–200.

    CAS  Google Scholar 

  70. Phipps G, Mikolajczak C, Guckes T. Indium and gallium: long-term supply. Renew Energy Focus. 2008;9(4):56–9.

    Google Scholar 

  71. Delbos S. Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics. 2012;3:35004.

    CAS  Google Scholar 

  72. Henry CH. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys. 1980;51(8):4494–500.

    CAS  Google Scholar 

  73. Mazzer M, Barnham KWJ, Ballard IM, Bessiere A, Ioannides A, Johnson DC, Lynch MC, Tibbits TND, Roberts JS, Hill G, Calder C. Progress in quantum well solar cells. Thin Solid Films. 2006;511–512:76–83.

    Google Scholar 

  74. Ross RT, Nozik AJ. Efficiency of hot-carrier solar energy converters. J Appl Phys. 1982;53(5):3813–8.

    CAS  Google Scholar 

  75. Lide DR. CRC handbook of chemistry and physics. 85th ed. Boca Raton, FL: CRC Press; 2004.

    Google Scholar 

  76. Wadia C, Alivisatos AP, Kammen DM. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol. 2009;43(6):2072–7.

    CAS  Google Scholar 

  77. Andersson BA. Materials availability for large-scale thin-film photovoltaics. Prog Photovoltaics Res Appl. 2000;8(1):61–76.

    CAS  Google Scholar 

  78. Andersson B, Azar C, Holmberg J, Karlsson S. Material constraints for thin-film solar cells. Energy. 1998;23(5):407–11.

    CAS  Google Scholar 

  79. Feltrin A, Freundlich A. Material considerations for terawatt level deployment of photovoltaics. Renew Energy. 2008;33(2):180–5.

    CAS  Google Scholar 

  80. Makovicky E. Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochemistry. 2006;61(1):7–125.

    CAS  Google Scholar 

  81. Nehb W, Vydra K. Sulfur. In: Ullmann’s encyclopedia of industrial chemistry, vol. 1. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 1–32.

    Google Scholar 

  82. Dittrich H, Stadler A, Topa D, Schimper H-J, Basch A. Progress in sulfosalt research. Phys status solidi. 2009;206(5):1034–41.

    CAS  Google Scholar 

  83. Lossin A. Copper. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2001. p. 467–97.

    Google Scholar 

  84. Zhang J, Richardson HW. Copper compounds. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 1–31.

    Google Scholar 

  85. Dufton JTR, Walsh A, Panchmatia PM, Peter LM, Colombara D, Islam MS. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys Chem Chem Phys. 2012;14(20):7229.

    CAS  Google Scholar 

  86. Schwab B, Ruh A, Manthey J, Drosik M. Zinc. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1–25.

    Google Scholar 

  87. Graf GG. Tin, tin alloys, and tin compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 37. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 119–26.

    Google Scholar 

  88. Dittrich H, Bieniok A, Brendel U, Grodzicki M, Topa D. Sulfosalts—a new class of compound semiconductors for photovoltaic applications. Thin Solid Films. 2007;515(15):5745–50.

    CAS  Google Scholar 

  89. Wernick JH, Benson KE. New semiconducting ternary compounds. J Phys Chem Solids. 1957;3(1–2):157–9.

    CAS  Google Scholar 

  90. Grund SC, Hanusch K, Breunig HJ, Wolf HU. Antimony and antimony compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Wiley-VCH Verlag GmbH & Co. KGaA: Germany; 2006. p. 41–93.

    Google Scholar 

  91. Krüger J, Winkler P, Lüderitz E, Lück M, Wolf HU. Bismuth, bismuth alloys, and bismuth compounds. In: Ullmann’s encyclopedia of industrial chemistry, vol. 100 C. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. p. 121–45.

    Google Scholar 

  92. Gerein NJ, Haber JA. One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices. Chem Mater. 2006;18(26):6297–302.

    CAS  Google Scholar 

  93. Chen CJ. Physics of solar energy. Hoboken: Wiley; 2011.

    Google Scholar 

  94. ASTM International. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM G173-03(2012). West Conshohocken 2012.

    Google Scholar 

  95. International Energy Agency (IEA). World Energy Outlook 2014; 2014.

    Google Scholar 

  96. Jacobsson S, Lauber V. The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy. 2006;34(3):256–76.

    Google Scholar 

  97. Jorant C. The implications of Fukushima. Bull At Sci. 2011;67(4):14–7.

    Google Scholar 

  98. Banu S, Ahn SJ, Ahn SK, Yoon K, Cho A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol Energy Mater Sol Cells. 2016;151:14–23.

    CAS  Google Scholar 

  99. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater. 2014;4(15):1400496.

    Google Scholar 

  100. Sun K, Yan C, Liu F, Huang J, Zhou F, Stride JA, Green M, Hao X. Over 9% efficient Kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1-XCdXS buffer layer. Adv Energy Mater. 2016;6(12):1600046.

    Google Scholar 

  101. Šúri M, Huld TA, Dunlop ED, Ossenbrink HA. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy. 2007;81(10):1295–305.

    Google Scholar 

  102. Huld T, Müller R, Gambardella A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol Energy. 2012;86(6):1803–15.

    Google Scholar 

  103. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Photovoltaic materials—present efficiencies and future challenges. Science. 2016;352(6283):307.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas James Whittles .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whittles, T.J. (2018). Introduction. In: Electronic Characterisation of Earth‐Abundant Sulphides for Solar Photovoltaics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-91665-1_1

Download citation

Publish with us

Policies and ethics