Skip to main content

Intensity Inhomogeneity Quantization-Based Variational Model for Segmentation of Hepatocellular Carcinoma (HCC) in Computed Tomography (CT) Images

  • Conference paper
  • First Online:
The Proceedings of the International Conference on Sensing and Imaging (ICSI 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 506))

Included in the following conference series:

  • 643 Accesses

Abstract

In this paper, we propose a novel quantity to measure the complexity of regions with inhomogeneous intensity in images. In order to describe real boundaries of objects, we further design an edge detector which is based on the similarity between object regions and those around them. Imbedding these two measurements of inhomogeneous regions into a level set framework, the proposed model is applied to segment HCC regions in CT images with promising results. Additionally, benefitting from the two measurements, segmentation is robust with respect to the initialization. Comparison results also confirm that the proposed method is more accurate than two well-known methods, the CV model and the BCS model, on segmenting objects with inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu J, Wang Y, Chen P (2008) Fetal ultrasound image segmentation system and its use in fetal weight estimation. Med Biol Eng Comput 46(12):1227–1237

    Article  Google Scholar 

  2. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation 1. Ann Rev Biomed Eng 2(1):315–337

    Article  Google Scholar 

  3. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  Google Scholar 

  4. Gutiérrez-Becker B, Cosío FA, Huerta MEG, Benavides-Serralde JA, Camargo-Marín L, Bañuelos VM (2013) Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3d statistical shape model. Med Biol Eng Comput 51(9):1021–1030

    Article  Google Scholar 

  5. Zhang D, Liu Y, Yang Y, Xu M, Yan Y, Qin Q (2016) A region-based segmentation method for ultrasound images in hifu therapy. Med Phys 43(6):2975–2989

    Article  Google Scholar 

  6. Roy S, Nag S, Maitra IK, Bandyopadhyay SK (2013) A review on automated brain tumor detection and segmentation from MRI of brain. arXiv preprint arXiv:1312.6150

    Google Scholar 

  7. Huang J, Yang X, Chen Y, Tang L (2013) Ultrasound kidney segmentation with a global prior shape. J Vis Commun Image Represent 24(7):937–943

    Article  Google Scholar 

  8. Qiu W, Yuan J, Ukwatta E, Sun Y, Rajchl M, Fenster A (2014) Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-d trus and mr images. IEEE Trans Med Imaging 33(4):947–960

    Article  Google Scholar 

  9. Gloger O, Tönnies KD, Liebscher V, Kugelmann B, Laqua R, Völzke H (2012) Prior shape level set segmentation on multistep generated probability maps of mr datasets for fully automatic kidney parenchyma volumetry. IEEE Trans Med Imaging 31(2):312–325

    Article  Google Scholar 

  10. Yang F, Qin W, Xie Y, Wen T, Gu J (2012) A shape-optimized framework for kidney segmentation in ultrasound images using nltv denoising and drlse. Biomed Eng Online 11(1):82

    Article  Google Scholar 

  11. Gui L, He J, Qiu Y, Yang X (2017) Integrating compact constraint and distance regularization with level set for hepatocellular carcinoma (hcc) segmentation on computed tomography (ct) images. Sens Imaging 18(1):4

    Article  Google Scholar 

  12. Xie J, Jiang Y, Tsui HT (2005) Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans Med Imaging 24(1):45–57

    Article  Google Scholar 

  13. Wu CH, Sun YN (2006) Segmentation of kidney from ultrasound b-mode images with texture-based classification. Comput Methods Prog Biomed 84(2):114–123

    Article  Google Scholar 

  14. Liu B, Cheng H, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recogn 43(6):2028–2042

    Article  MATH  Google Scholar 

  15. He L, Zheng S, Wang L (2010) Integrating local distribution information with level set for boundary extraction. J Vis Commun Image Represent 21(4):343–354

    Article  Google Scholar 

  16. Vivekanantham S, Azzopardi G, Prashanth Ravindran G (2014) Active contours driven by the salient edge energy model. Br J Hosp Med (Lond: 2005) 75(4):236

    Google Scholar 

  17. Hou Z (2006) A review on mr image intensity inhomogeneity correction. Int J Biomed Imaging 2006

    Google Scholar 

  18. Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923

    Article  Google Scholar 

  19. Li C, Huang R, Ding Z, Gatenby J, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang L, Chen Y, Pan X, Hong X, Xia D (2010) Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. J Neurosci Methods 188(2):316–325

    Article  Google Scholar 

  21. Wang L, Pan C (2014) Image-guided regularization level set evolution for MR image segmentation and bias field correction. Magn Reson Imaging 32(1):71–83

    Article  Google Scholar 

  22. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  23. Powers DM (2011) Evaluation: from precision, recall and f-measure to roc, informedness, markedness & correlation. J Mach Learn Technol 2(1):37–63

    MathSciNet  Google Scholar 

  24. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (No. 91330101 and NO.11531005).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gui, L., Yang, X. (2019). Intensity Inhomogeneity Quantization-Based Variational Model for Segmentation of Hepatocellular Carcinoma (HCC) in Computed Tomography (CT) Images. In: Jiang, M., Ida, N., Louis, A., Quinto, E. (eds) The Proceedings of the International Conference on Sensing and Imaging. ICSI 2017. Lecture Notes in Electrical Engineering, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-319-91659-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91659-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91658-3

  • Online ISBN: 978-3-319-91659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics