Skip to main content

Image Restoration for Target Behind Inhomogeneous Turbid Medium via Longitudinal Laser Tomography

  • Conference paper
  • First Online:
  • 671 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 506))

Abstract

Target images of range-gated imaging in adverse turbid environments still suffer from the degradation of inhomogeneous turbid medium over the laser transmission path. Based on longitudinal laser tomography, a novel image restoration method is proposed to remove the interferences of the inhomogeneous turbid medium from the degraded target images. The degradation caused by the turbid medium is approximately estimated, assisted by some prior system parameters and the backscattering images of the turbid medium, which can further be used for removal of the interferences of the turbid medium through a proper total variation model. Experimental results demonstrate that the proposed image restoration method can effectively eliminate the interferences of inhomogeneous turbid medium and achieve exactly the reflectivity distribution for the target behind the turbid medium layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ishimaru A (1978) Wave propagation and scattering in random media. Academic, New York

    Chapter  Google Scholar 

  2. McLean EA, Burris HR, Strand MP (1995) Short-pulse range-gated optical imaging in turbid water. Appl Opt 34:4343–4351

    Article  Google Scholar 

  3. Kang S, Jeong S, Choi W, Ko H, Yang TD, Joo JH, Lee JS, Lim YS, Park QH, Choi W (2015) Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat Photon 9:253–258

    Article  Google Scholar 

  4. Gibson A, Hebden J, Arridge S (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43

    Article  Google Scholar 

  5. Wu KD, Cheng QL, Shi YL, Wang H, Wang PG (2015) Hiding scattering layers for noninvasive imaging of hidden objects. Sci Rep 5:8375

    Article  Google Scholar 

  6. Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998). pp 839–846

    Google Scholar 

  8. Oppenheim AV, Schafer RW, Stockham TG (1968) Nonlinear filtering of multiplied and convolved signals. Proc IEEE Trans Audio Electroacoustics (IEEE, 1968) 56(8):1264–1291

    Google Scholar 

  9. Martin FM, Munoz ME, Alberola LC (2006) A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution. Proc IEEE Ultrasonics Symp (IEEE, 2006) 7(3):1694–1697

    Article  Google Scholar 

  10. Lainiotis DG, Papaparaskeva P, Plataniotis K (1996) Nonlinear filtering for LIDAR signal processing. Math Probl Eng 2(5):367–392

    Article  Google Scholar 

  11. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  MathSciNet  Google Scholar 

  12. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89–97

    Article  MathSciNet  Google Scholar 

  13. Chan TF, Esedoglu S (2005) Aspects of total variation regularized L1 function approximation. SIAM J Appl Math 65:1817–1837

    Article  MathSciNet  Google Scholar 

  14. Yang JF, Zhang Y, Yin WT (2009) An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput 31(4):2842–2865

    Article  MathSciNet  Google Scholar 

  15. Jin ZM, Yang XP (2011) A variational model to remove the multiplicative noise in ultrasound images. J Math Imaging Vis 39:62–74

    Article  MathSciNet  Google Scholar 

  16. Strekalov DV, Sergienko AV, Klyshko DN, Shih YH (1995) Observation of two photon ‘ghost’ interference and diffraction. Phys Rev Lett 74:3600–3603

    Article  Google Scholar 

  17. Bennink RS, Bentley SJ, Boyd RW (2002) Two-photon’ coincidence imaging with a classical source. Phys Rev Lett 89:113601

    Article  Google Scholar 

  18. Freund I (1990) Looking through walls and around corners. Phys A 168:49–65

    Article  Google Scholar 

  19. Mosk AP, Lagendijk A, Lerosey G, Fink M (2006) Controlling waves in space and time for imaging and focusing in complex media. Nat Photon 6:283–292

    Article  Google Scholar 

  20. Katz O, Small E, Silberberg Y (2011) Focusing and compression of ultrashort pulses through scattering media. Nat Photon 5:372–377

    Article  Google Scholar 

  21. Bertolotti J, Puttenb EG, Blumc C, Lagendijkb A, Vos WL, Mosk AP (2012) Non-invasive imaging through opaque scattering layers. Nature 491:232–234

    Article  Google Scholar 

  22. Katz O, Heidmann P, Fink M, Gigan S (2014) Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photon 8:784–790

    Article  Google Scholar 

  23. Gillespie LF (1966) Apparent illumination as a function of range in gated, laser night-viewing systems. J Opt Soc Am 56:883–887

    Article  Google Scholar 

  24. Fournier GR, Bonnier D, Forand JL, Pace PW (1993) Range-gated underwater laser imaging system. Opt Eng 32:2185–2190

    Article  Google Scholar 

  25. Digger RG, Vollmerhausen RH, Devitt N, Halfort C, Barnard KJ (2003) Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance. Opt Eng 42(3):738–746

    Article  Google Scholar 

  26. Andersson P (2006) Long-range three dimensional imaging using range-gated laser radar images. Opt Eng 45:034301

    Article  Google Scholar 

  27. Laurenzis M, Christnacher F, Monnin D (2007) Long-range three-dimensional active imaging with superresolution depth mapping. Opt Lett 32(21):3146–3148

    Article  Google Scholar 

  28. Yi WJ, Hu WH, Wang P, Li XJ (2016) Image restoration method for longitudinal laser tomography based on degradation matrix estimation. Appl Opt 55(20):5432–5438

    Article  Google Scholar 

  29. Yi WJ, Liu HB, Wang P, Fu MC, Tan JC, Li XJ (2017) Reconstruction of target image from inhomogeneous degradations through backscattering medium images using self-calibration. Opt Express 25(7):7392–7401

    Article  Google Scholar 

  30. Yi WJ, Wang P, Fu MC, Tan JC, Zhu JB, Li XJ (2017) Restoration of longitudinal laser tomography target image from inhomogeneous medium degradation under common conditions. Opt Express 25(14):15687–15698

    Article  Google Scholar 

  31. Richmond RD, Cain SC (2010) Direct-detection LADAR systems. SPIE Press, Bellingham

    Book  Google Scholar 

  32. Andrews LC, Phillips RL (2005) Laser beam propagation through random media. SPIE Press, Bellingham

    Google Scholar 

  33. McManamon PF (2012) Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology. Opt Eng 51(6):060901

    Article  Google Scholar 

  34. Fernald FG (1984) Analysis of atmospheric lidar observations: some comments. Appl Opt 23(5):652–653

    Article  Google Scholar 

  35. George MH, Marvin RQ (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12(3):555–563

    Article  Google Scholar 

  36. Pinnick RG, Jennings SG, Chylek P, Ham C, Grandy WT Jr (1983) Backscatter and extinction in water clouds. J Geophys Res 88(C11):6787–6796

    Article  Google Scholar 

  37. O’Connor EJ, Illingworth AJ, Hogan RJ (2004) A technique for autocalibration of cloud lidar. J Atmos Ocean Technol 21(5):777–786

    Article  Google Scholar 

  38. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. Proc IEEE TransImage Processing (IEEE, 2004) 13(4):600–612

    Google Scholar 

  39. Adelmann HG (1998) Butterworth equations for homomorphic filtering of images. Comput Biol Med 28(2):169–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, W., Wang, X., Shao, Z., Fu, M., Wang, L., Li, X. (2019). Image Restoration for Target Behind Inhomogeneous Turbid Medium via Longitudinal Laser Tomography. In: Jiang, M., Ida, N., Louis, A., Quinto, E. (eds) The Proceedings of the International Conference on Sensing and Imaging. ICSI 2017. Lecture Notes in Electrical Engineering, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-319-91659-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91659-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91658-3

  • Online ISBN: 978-3-319-91659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics