Skip to main content

Data Driven Analytics (Machine Learning) for System Characterization, Diagnostics and Control Optimization

  • Conference paper
  • First Online:
Book cover Advanced Computing Strategies for Engineering (EG-ICE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10863))

Abstract

This presentation discusses the potential use of machine learning techniques to build data-driven models to characterize an engineering system for performance assessment, diagnostic analysis and control optimization. Focusing on the Gaussian Process modeling approach, engineering applications on constructing predictive models for energy consumption analysis and tool condition monitoring of a milling machine tool are presented. Furthermore, a cooperative control optimization approach for maximizing wind farm power production by combining Gaussian Process modeling with Bayesian Optimization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives and prospects. Science 349, 255–269 (2015)

    Article  MathSciNet  Google Scholar 

  2. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. An Open Access J. 4, 23–45 (2016)

    Google Scholar 

  3. Suresh, P.V.S., Venkateswara Rao, P., Deshmukh, S.G.: A genetic algorithmic approach for optimization of surface roughness prediction model. Int. J. Mach. Tools Manuf. 42, 675–680 (2002)

    Article  Google Scholar 

  4. Ghosh, N., Ravi, Y.B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A.R., Chattopadhyay, A.B.: Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Sign. Process. 21, 466–479 (2007)

    Article  Google Scholar 

  5. Ak, R., Helu, M., Rachuri, S.: Ensemble neural network model for predicting the energy consumption of a milling machine. In: 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2015), p. V004T05A056. ASME (2015)

    Google Scholar 

  6. Jihong, Y., Lee, J.: Degradation assessment and fault modes classification using logistic regression. J. Manuf. Sci. Eng. 127, 912–914 (2005)

    Article  Google Scholar 

  7. Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184, 1140–1154 (2008)

    Article  Google Scholar 

  8. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015)

    Article  Google Scholar 

  9. Orbanz, P., Teh, Y.W.: Bayesian nonparametric models. In: Encyclopedia of Machine Learning, pp. 81–89. Springer, New York (2011)

    Google Scholar 

  10. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  11. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML-2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  12. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  13. Bhinge, R., Park, J., Law, K.H., Dornfeld, D., Moneer, M., Rachuri, S.: Towards a generalized energy prediction model for machine tools. J. Manuf. Sci. Eng. 139(4), 041013 (2017)

    Article  Google Scholar 

  14. Park, J., Law, K.H., Bhinge, R., Biswas, N., Srinivasan, A., Dornfeld, D., Helu, M., Rachuri, S.: A generalized data-driven energy prediction model with uncertainty for a milling machine tool using Gaussian Process. In: 2015 International Manufacturing Science and Engineering Conference (MSEC 2015), p. V002T05A010. ASME (2015)

    Google Scholar 

  15. Nguyen-Tuong, D., Peters, J.R., Seeger, M.: Local Gaussian process regression for real time online model learning. In: 22nd Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems 21, pp. 1193–1200 (2008)

    Google Scholar 

  16. Teramura, K., Hideharu, O., Yuusaku, T., Shimpei, M., Shinichi, M.: Gaussian process regression for rendering music performance. In: International Conference on Music Perception and Cognition (ICMPC 10), pp. 167–172 (2008)

    Google Scholar 

  17. Alpaydm, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2014)

    Google Scholar 

  18. Brochu, E., Cora, M.V., Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions with application to active user modelling and hierarchical reinforcement learning. Technical report, University of British Columbia, Canada (2010). arXiv:1012.2599

  19. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  20. Osborne, M.: Bayesian Gaussian process for sequential prediction, optimization and quadrature. Ph.D. Dissertation, Department of Computer Science, University of Oxford, UK (2010)

    Google Scholar 

  21. Bubeck, S., Munos, R., Stoltz, G., Szepesvari. C.: X-armed Bandits. J. Mach. Learn. Res. 12, 1655–1695 (2011)

    Google Scholar 

  22. Scott, S.L.: A modern Bayesian look at the multi-armed bandits. Appl. Stochast. Models Bus. Indus. 26(6), 639–658 (2010)

    Article  MathSciNet  Google Scholar 

  23. Osborne, M., Garnett, R., Roberts, S.: Active data selection for sensor networks with faults and changepoints. In: IEEE International Conference for Advanced Information Networking and Applications (2010). https://doi.org/10.1109/aina.2010.36

  24. Garnett, R., Osborne, M., Roberts, S.: Bayesian optimization for sensor set selection. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Network, pp. 209–219 (2010)

    Google Scholar 

  25. Park, J., Law, K.H.: Bayesian ascent: a data-driven optimization scheme for real-time control with application to wind farm power maximization. IEEE Trans. Control Syst. Technol. 24(5), 1655–1668 (2016)

    Article  Google Scholar 

  26. Duvenand, D.K.: Automatic model construction with Gaussian processes. Ph.D. Thesis, University of Cambridge (2014)

    Google Scholar 

  27. Genton, M.G.: Classes of kernels for machine learning: a statistics perspectives. J. Mach. Learn. Res. 2, 299–312 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Blondel, M., et al.: Scikit-learn, machine learning in Python. http://scikit-learn.org/stable/. Accessed 22 Dec 2016

  30. Sobel, W.: MTConnect Standard. Part 1—Overview and Protocol, Version 1.3.0 (2015)

    Google Scholar 

  31. Vijayaraghavan, A., Dornfeld, D.: Automated energy monitoring of machine tools. CIRP Ann. Manuf. Technol. 59, 21–24 (2010)

    Article  Google Scholar 

  32. Bhinge, R., Biswas, N., Dornfeld, D., Park, J., Law, K.H., Helu, M., Rachuri, S.: An intelligent machine monitoring system for energy prediction using a Gaussian process regression. In: IEEE International Conference on Big Data, pp. 978–986. IEEE (2014)

    Google Scholar 

  33. Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014)

    Article  Google Scholar 

  34. Kannatey-Asibu, E., Dornfeld, D.A.: A study of tool wear using statistical analysis of metal-cutting acoustic emission. Wear 76(2), 247–261 (1982)

    Article  Google Scholar 

  35. Dimla, D., Lister, M.: Online metal cutting tool condition monitoring - I: force and vibration analyses. Int. J. Mach. Tools Manuf. 40(5), 739–768 (2000)

    Article  Google Scholar 

  36. Stoica, P., Moses, R.L.: Spectral Analysis of Signals, vol. 452. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  37. Allen, R.L., Mills, D.: Signal Analysis: Time, Frequency, Scale, and Structure. Wiley, New York (2004)

    Google Scholar 

  38. Welch, P.: The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  Google Scholar 

  39. Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression. In: Advances in Neural Information Processing Systems, pp. 514–520 (1996)

    Google Scholar 

  40. Wilson, A.G., Adams, R.P.: Gaussian process kernels for pattern discovery and extrapolation. In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, vol. 28, pp. III-1067–III-1075 (2013)

    Google Scholar 

  41. Mockus, J., Fretitas, A., Castelanous, J.A.: Toward Global Optimization. North-Holland, Amsterdam (1978)

    Google Scholar 

  42. Park, J., Law, K.H.: Cooperative wind turbine control for maximizing wind farm power using sequential convex programming. Energy Convers. Manag. 101, 295–316 (2015)

    Article  Google Scholar 

  43. Park, J., Kwon, S., Law, K.H.: A data-driven, cooperative approach for wind farm control: a wind tunnel experimentation. Energies 10, 852 (2017)

    Article  Google Scholar 

  44. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Neural Information Processing Systems (NIPS) Conference, pp. 1257–1264 (2005)

    Google Scholar 

  45. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Ranganathan, A., Yang, M.H., Ho, J.: Online sparse Gaussian process regression and its applications. IEEE Trans. Image Process. 20(2), 391–404 (2011)

    Article  MathSciNet  Google Scholar 

  47. Park, J., Bhinge, R., Law, K.H., Dornfeld, D., Mason, C., Rachuri, S.: Real time energy prediction for a milling machine tool using sparse Gaussian process regression. In: International Conference on Big Data, pp. 1451–1460 (2015)

    Google Scholar 

Download references

Acknowledgments and Disclaimer

The authors would like to acknowledge the assistance from the late Prof. David Dornfeld of the Laboratory for Manufacturing and Sustainability at UC Berkeley and Dr. Raunak Bhinge of Infinite Uptime, Inc., who conducted the experiments and collected the machine operation data on the Mori Seiki Milling Machine. The authors would also like to thank Prof. Soon-Duck Kwon of Chonbuk National University in Korea, who generously provided the wind tunnel laboratory (KOCED Wind Tunnel Center) facilities for the wind farm power production experiments.

The work described in this paper was partially supported by the National Institute of Standards and Technology (NIST) cooperative agreement with Stanford University (Grant No. 70NANB12H273 and 70NANB17H031), and the US National Science Foundation (NSF) (Grant No. ECCS-1446330). Any opinions, findings, conclusions or recommendations expressed in the paper are solely those of the authors and do not necessary reflect the views of NSF, NIST and the authors’ collaborators. Certain commercial systems are identified in this paper; such identification does not imply recommendation or endorsement by NSF, NIST, Stanford University or the authors; nor does it imply that the products identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kincho H. Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Ferguson, M., Law, K.H. (2018). Data Driven Analytics (Machine Learning) for System Characterization, Diagnostics and Control Optimization. In: Smith, I., Domer, B. (eds) Advanced Computing Strategies for Engineering. EG-ICE 2018. Lecture Notes in Computer Science(), vol 10863. Springer, Cham. https://doi.org/10.1007/978-3-319-91635-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91635-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91634-7

  • Online ISBN: 978-3-319-91635-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics