Introduction to Mirror Symmetry

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 240)


An introduction to mirror symmetry in Hodge diamonds, with a review of the prerequisite geometry.


  1. 1.
    D. Auroux, “Lecture notes from the spring 2009 topics in geometry class.” [Online]. Available:
  2. 2.
    R. Bott, “On a theorem of Lefschetz,” Michigan Math. J., vol. 6, pp. 211–216, 1959.MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, ser. Clay Mathematics Monographs.   American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003, vol. 1, with a preface by Vafa.Google Scholar
  4. 4.
    C. Voisin, Mirror symmetry, ser. SMF/AMS Texts and Monographs.   American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 1999, vol. 1, translated from the 1996 French original by Roger Cooke.Google Scholar
  5. 5.
    ——, Hodge theory and complex algebraic geometry. I, ser. Cambridge Studies in Advanced Mathematics.   Cambridge University Press, Cambridge, 2002, vol. 76, translated from the French original by Leila Schneps.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TexasAustinUSA

Personalised recommendations