Skip to main content

The SYZ Conjecture via Homological Mirror Symmetry

  • Conference paper
  • First Online:
Superschool on Derived Categories and D-branes (SDCD 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 240))

Included in the following conference series:

Abstract

These are expanded notes based on a talk given at the Superschool on Derived Categories and D-branes held at the University of Alberta in July of 2016. The goal of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow (SYZ) conjecture from the point of view of homological mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One should work with the dg/\(A_\infty \) enhancements of these categories but we ignore that here.

  2. 2.

    For background on D-branes see for example [2] or the other entries in this volume.

  3. 3.

    D0, D3, ...denote 0-dimensional, 3-dimensional, ...D-branes.

  4. 4.

    That is, k in degree zero and 0 in other degrees.

  5. 5.

    This choice is the reason that X may have several mirrors.

  6. 6.

    That is, a degeneration with maximally unipotent monodromy. These are sometimes known as large complex structure limits (LCSL).

  7. 7.

    Here we’ve assumed for simplicity that the only critical value of W is at \(0 \in {\mathbb C}\).

  8. 8.

    More precisely, the sum is over curve classes \(\beta \) with Maslov index \(\mu (\beta ) = 2\).

References

  1. Mohammed Abouzaid, Denis Auroux, and Ludmil Katzarkov. Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. Publ. Math. Inst. Hautes Études Sci., 123:199–282, 2016.

    Article  MathSciNet  Google Scholar 

  2. Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendr” oi, and P. M. H. Wilson. Dirichlet branes and mirror symmetry, volume 4 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009.

    Google Scholar 

  3. Mohammed Abouzaid. Family Floer cohomology and mirror symmetry. ArXiv e-prints, April 2014.

    Google Scholar 

  4. Mohammed Abouzaid. The family Floer functor is faithful. ArXiv e-prints, August 2014.

    Google Scholar 

  5. Mohammed Abouzaid. Homological mirror symmetry without corrections. ArXiv e-prints, March 2017.

    Google Scholar 

  6. Dan Abramovich and Qile Chen. Stable logarithmic maps to Deligne-Faltings pairs II. Asian J. Math., 18(3):465–488, 2014.

    Article  MathSciNet  Google Scholar 

  7. D. Arinkin and A. Polishchuk. Fukaya category and Fourier transform. In Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), volume 23 of AMS/IP Stud. Adv. Math., pages 261–274. Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  8. V. I. Arnol\(\prime \)d. Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, [1989?]. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition.

    Google Scholar 

  9. Denis Auroux. Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT, 1:51–91, 2007.

    MathSciNet  MATH  Google Scholar 

  10. Denis Auroux. Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, volume 13 of Surv. Differ. Geom., pages 1–47. Int. Press, Somerville, MA, 2009.

    Google Scholar 

  11. Matthew Robert Ballard. Meet homological mirror symmetry. In Modular forms and string duality, volume 54 of Fields Inst. Commun., pages 191–224. Amer. Math. Soc., Providence, RI, 2008.

    Google Scholar 

  12. K. Chan. Homological mirror symmetry for local Calabi-Yau manifolds via SYZ. ArXiv e-prints, July 2016.

    Google Scholar 

  13. Qile Chen. Stable logarithmic maps to Deligne-Faltings pairs I. Ann. of Math. (2), 180(2):455–521, 2014.

    Google Scholar 

  14. Cheol-Hyun Cho and Yong-Geun Oh. Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math., 10(4):773–814, 2006.

    Article  MathSciNet  Google Scholar 

  15. Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. Lagrangian intersection Floer theory: anomaly and obstruction., volume 46 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.

    Google Scholar 

  16. Mark Gross. Special Lagrangian fibrations. I. Topology. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pages 156–193. World Sci. Publ., River Edge, NJ, 1998.

    Google Scholar 

  17. Mark Gross. Special Lagrangian fibrations. II. Geometry. A survey of techniques in the study of special Lagrangian fibrations. In Surveys in differential geometry: differential geometry inspired by string theory, volume 5 of Surv. Differ. Geom., pages 341–403. Int. Press, Boston, MA, 1999.

    Google Scholar 

  18. Mark Gross. Tropical geometry and mirror symmetry, volume 114 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011.

    Google Scholar 

  19. Mark Gross. Mirror symmetry and the Strominger-Yau-Zaslow conjecture. In Current developments in mathematics 2012, pages 133–191. Int. Press, Somerville, MA, 2013.

    Google Scholar 

  20. Mark Gross and Bernd Siebert. Affine manifolds, log structures, and mirror symmetry. Turkish J. Math., 27(1):33–60, 2003.

    MathSciNet  MATH  Google Scholar 

  21. Mark Gross and Bernd Siebert. Mirror symmetry via logarithmic degeneration data. I. J. Differential Geom., 72(2):169–338, 2006.

    Article  MathSciNet  Google Scholar 

  22. Mark Gross and Bernd Siebert. From real affine geometry to complex geometry. Ann. of Math. (2), 174(3):1301–1428, 2011.

    Google Scholar 

  23. Mark Gross and Bernd Siebert. Logarithmic Gromov-Witten invariants. J. Amer. Math. Soc., 26(2):451–510, 2013.

    Article  MathSciNet  Google Scholar 

  24. Mark Gross and P. M. H. Wilson. Large complex structure limits of \(K3\) surfaces. J. Differential Geom., 55(3):475–546, 2000.

    Article  MathSciNet  Google Scholar 

  25. Nigel J. Hitchin. The moduli space of special Lagrangian submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3-4):503–515 (1998), 1997. Dedicated to Ennio De Giorgi.

    Google Scholar 

  26. Dominic Joyce. Singularities of special Lagrangian fibrations and the SYZ conjecture. Comm. Anal. Geom., 11(5):859–907, 2003.

    Article  MathSciNet  Google Scholar 

  27. Dominic Joyce. Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci., 2(1):1–62, 2015.

    Article  MathSciNet  Google Scholar 

  28. Anton Kapustin and Yi Li. Topological correlators in Landau-Ginzburg models with boundaries. Adv. Theor. Math. Phys., 7(4):727–749, 2003.

    Article  MathSciNet  Google Scholar 

  29. Maxim Kontsevich. Homological algebra of mirror symmetry. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 120–139. Birkhäuser, Basel, 1995.

    Google Scholar 

  30. Maxim Kontsevich and Yan Soibelman. Homological mirror symmetry and torus fibrations. In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 203–263. World Sci. Publ., River Edge, NJ, 2001.

    Google Scholar 

  31. Naichung Conan Leung, Shing-Tung Yau, and Eric Zaslow. From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform. Adv. Theor. Math. Phys., 4(6):1319–1341, 2000.

    Article  MathSciNet  Google Scholar 

  32. Robert C. McLean. Deformations of calibrated submanifolds. Comm. Anal. Geom., 6(4):705–747, 1998.

    Article  MathSciNet  Google Scholar 

  33. D. O. Orlov. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Tr. Mat. Inst. Steklova, 246(Algebr. Geom. Metody, Svyazi i Prilozh.):240–262, 2004.

    Google Scholar 

  34. Alexander Polishchuk and Eric Zaslow. Categorical mirror symmetry: the elliptic curve. Adv. Theor. Math. Phys., 2(2):443–470, 1998.

    Article  MathSciNet  Google Scholar 

  35. Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. Mirror symmetry is \(T\)-duality. Nuclear Phys. B, 479(1–2):243–259, 1996.

    Article  MathSciNet  Google Scholar 

  36. Junwu Tu. On the reconstruction problem in mirror symmetry. Adv. Math., 256:449–478, 2014.

    Article  MathSciNet  Google Scholar 

  37. R. P. Thomas and S.-T. Yau. Special Lagrangians, stable bundles and mean curvature flow. Comm. Anal. Geom., 10(5):1075–1113, 2002.

    Article  MathSciNet  Google Scholar 

  38. Alan Weinstein. Symplectic manifolds and their Lagrangian submanifolds. Advances in Math., 6:329–346 (1971), 1971.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dori Bejleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bejleri, D. (2018). The SYZ Conjecture via Homological Mirror Symmetry. In: Ballard, M., Doran, C., Favero, D., Sharpe, E. (eds) Superschool on Derived Categories and D-branes. SDCD 2016. Springer Proceedings in Mathematics & Statistics, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-91626-2_13

Download citation

Publish with us

Policies and ethics