Introduction to Homological Mirror Symmetry

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 240)


Mirror symmetry states that to every Calabi-Yau manifold \(X\) with complex structure and symplectic symplectic structure there is another dual manifold \(X^\vee \), so that the properties of \(X\) associated to the complex structure (e.g. periods, bounded derived category of coherent sheaves) reproduce properties of \(X^\vee \) associated to its symplectic structure (e.g. counts of pseudo holomorphic curves and discs).


  1. 1.
    P. Candelas, X. de la Ossa, P. Green, and L. Parkes. An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds. Physics Letters B, 258(1–2):118–126, 1991.Google Scholar
  2. 2.
    A. Givental. A mirror theorem for toric complete intersections. Progress in Mathematics, 160:141–176, 1998.MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. Batyrev. Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. In J. Alg. Geom. Citeseer, 1994.zbMATHGoogle Scholar
  4. 4.
    V. Batyrev and L. Borisov. Mirror duality and string-theoretic Hodge numbers. Inventiones mathematicae, 126(1):183–203, 1996.MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Kontsevich. Homological algebra of mirror symmetry. In in Proceedings of the International Congress of Mathematicians. Citeseer, 1994.Google Scholar
  6. 6.
    M. Ballard. Meet homological mirror symmetry. 2008.Google Scholar
  7. 7.
    P. Aspinwall et al. Dirichlet branes and mirror symmetry, volume 4. American Mathematical Soc., 2009.Google Scholar
  8. 8.
    P. Seidel. Fukaya categories and deformations. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Citeseer, 2002.Google Scholar
  9. 9.
    D. Auroux. A beginners introduction to Fukaya categories. In Contact and symplectic topology, pages 85–136. Springer, 2014.Google Scholar
  10. 10.
    P. Seidel. Fukaya categories and Picard-Lefschetz theory. European Mathematical Society, 2008.Google Scholar
  11. 11.
    I. Smith. A symplectic prolegomenon. Bulletin of the American Mathematical Society, 52(3):415–464, 2015.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Căldăraru. Derived categories of sheaves: a skimming. Snowbird Lectures in Algebraic Geometry. Contemp. Math, 388:43–75, 2005.CrossRefGoogle Scholar
  13. 13.
    N. Sheridan. On the fukaya category of a Fano hypersurface in projective space. Publications mathématiques de l’IHÉS, 124(1):165–317, 2016.MathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Keller. A-infinity algebras, modules and functor categories. Contemporary Mathematics, 406:67–94, 2006.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Bondal and M. Kapranov. Enhanced triangulated categories. Matematicheskii Sbornik, 181(5):669–683, 1990.zbMATHGoogle Scholar
  16. 16.
    K. Lefevre-Hasegawa. Sur les \(A_\infty \)-catégories. PhD thesis, Ph. D. thesis, Université Paris 7, UFR de Mathématiques, 2003, math. CT/0310337, 2002.Google Scholar
  17. 17.
    P. Seidel. Homological mirror symmetry for the quartic surface, volume 236. American Mathematical Society, 2015.Google Scholar
  18. 18.
    V. Lunts and D. Orlov. Uniqueness of enhancement for triangulated categories. Journal of the American Mathematical Society, 23(3):853–908, 2010.MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Orlov. Smooth and proper noncommutative schemes and gluing of DG categories. Advances in Mathematics, 302:59–105, 2016.MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Polishchuk and E. Zaslow. Categorical mirror symmetry in the elliptic curve. AMS IP Studies in Advanced Mathematics, 23:275–296, 2001.CrossRefGoogle Scholar
  21. 21.
    Y. Lekili and T. Perutz. Arithmetic mirror symmetry for the 2-torus. arXiv:1211.4632, 2012.
  22. 22.
    M. Abouzaid and I. Smith. Homological mirror symmetry for the 4-torus. Duke Mathematical Journal, 152(3):373–440, 2010.MathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Auroux, L. Katzarkov, and D. Orlov. Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Inventiones mathematicae, 166(3):537–582, 2006.MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Polishchuk. \(a_\infty \)-structures on an elliptic curve. Communications in mathematical physics, 247(3):527–551, 2004.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Lekili and A. Polishchuk. Arithmetic mirror symmetry for genus 1 curves with \(n\) marked points. Selecta Mathematica, 23(3):1851–1907, 2017.MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Auroux. Mirror symmetry and T-duality in the complement of an anticanonical divisor. Journal of Gökova Geometry Topology, 1:51–91, 2007.MathSciNetzbMATHGoogle Scholar
  27. 27.
    T. Eguchi, K. Hori, and C.-S. Xiong. Gravitational quantum cohomology. International Journal of Modern Physics A, 12(09):1743–1782, 1997.MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Seidel. Homological mirror symmetry for the genus two curve. Journal of Algebraic Geometry, 20:727–769, 2011.MathSciNetCrossRefGoogle Scholar
  29. 29.
    D. Auroux, L. Katzarkov, and D. Orlov. Mirror symmetry for weighted projective planes and their noncommutative deformations. Annals of Mathematics, 167(3):867–943, 2008.MathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Ueda. Homological mirror symmetry for toric del Pezzo surfaces. Communications in mathematical physics, 264(1):71–85, 2006.MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Futaki and K. Ueda. Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space. Communications in Mathematical Physics, 332(1):53–87, 2014.MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Abouzaid. Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. Selecta Mathematica, New Series, 15(2):189–270, 2009.MathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Fang, C.-C. M. Liu, D. Treumann, and E Zaslow. A categorification of morellis theorem. Inventiones mathematicae, 186(1):79–114, 2011.MathSciNetCrossRefGoogle Scholar
  34. 34.
    B. Fang, C.-C. M. Liu, D. Treumann, and E. Zaslow. The coherent-constructible correspondence for toric Deligne-Mumford stacks. International Mathematics Research Notices, 2014(4):914–954, 2012.MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. Nadler and E. Zaslow. Constructible sheaves and the Fukaya category. Journal of the American Mathematical Society, 22(1):233–286, 2009.MathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Orlov. Triangulated categories of singularities and D-branes in Landau–Ginzburg models. Trudy Matematicheskogo Instituta imeni VA Steklova, 246:240–262, 2004.MathSciNetzbMATHGoogle Scholar
  37. 37.
    A. Efimov. Homological mirror symmetry for curves of higher genus. Advances in Mathematics, 230(2):493–530, 2012.MathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Kapustin, L. Katzarkov, D. Orlov, and M. Yotov. Homological mirror symmetry for manifolds of general type. Open Mathematics, 7(4):571–605, 2009.MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Gross, L. Katzarkov, and H. Ruddat. Towards mirror symmetry for varieties of general type. Advances in Mathematics, 308:208–275, 2017.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MiamiCoral GablesUSA

Personalised recommendations