Skip to main content

37 Demography and Conservation of Deep Corals: The Study of Population Structure and Dynamics

  • Chapter
  • First Online:
  • 1447 Accesses

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

The science of demography was developed for the study of human populations, but the theoretical framework and analytical techniques can be easily applied to animal populations, giving powerful instruments for conservation and management. Demography is then a paradigmatic example of the advantages of interdisciplinary approaches which allow transferring the techniques developed in one field (e.g. human population studies) to different fields (e.g. nature conservation and management). Cold-water corals have been approached relatively recently by scientist due to the technical constrains linked to the deep habitat where they live. However the fast development of underwater observation technologies is allowing to gather data on those deep and not easily accessible ecosystems, showing their paramount role in the ecosystem functioning. Due to the peace at which environmental changes are threatening natural ecosystems, increasing our knowledge on cold-water corals is urgent and time constrained. Due to the slow life cycles of the cold-water coral species, forecasting capacity is needed to understand the dynamics of their populations. Demography can give this forecasting capacity but, up to now, the paucity of data from deep coral populations still not allowed to apply demographic models to those environments. Fortunately, the application of demographic models to other species with similar characteristics can help a fast development of similar instruments to cold-water corals. The present chapter aims at introducing demography from an historical point of view, showing how this science evolved from the study of human populations to the conservation of animal populations. We then review the application of demographic modeling to coral populations and in particular we focus on the case study of the Mediterranean red coral (Corallium rubrum). This species is endemic to the Mediterranean Sea and besides it is not considered as a cold-water coral species, it dwells in relatively cold environment and can be found at considerable depths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Álvarez-Pérez G, Busquets P, Sandoval N, et al (2005) Deep-water coral occurrences in the Strait of Gibraltar. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 207–221

    Chapter  Google Scholar 

  • Arrigoni M, Manfredi P, Panigada S, et al (2011) Life-history tables of the Mediterranean fin whale from stranding data. Mar Ecol 32:1–9

    Article  Google Scholar 

  • Bacaer N (2010) A Short history of mathematical population dynamics. Springer, London. ISBN: 978-0-85729-114-1. e-ISBN: 978-0-85729-115-8. https://doi.org/10.1007/978-0-85729-115-8

    Book  Google Scholar 

  • Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Progr Ser 162:301–306

    Article  Google Scholar 

  • Benedetti MC, Priori C, Erra F, et al (2016) Growth patterns in mesophotic octocorals: timing the branching process in the highly-valuable Mediterranean Corallium rubrum. Est Coastl Shelf Sci 171:106–110

    Article  Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations, fishery investigations series II vol XIX, Ministry of Agriculture, Fisheries and Food, 533 p

    Google Scholar 

  • Bo M, Bavestrello G, Angiolillo M, et al (2015) Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS One 10:e0119393. https://doi.org/10.1371/journal.pone.0119393

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongiorni L, Mea M, Gambi C, et al (2010) Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biol Conserv 143:1687–1700

    Article  Google Scholar 

  • Bramanti L, Magagnini G, De Maio L, et al (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol 314:69–78

    Article  Google Scholar 

  • Bramanti L, Santangelo G, Iannelli M (2009) Mathematical modelling for conservation and management of gorgonians corals: young and olds, could they coexist? Ecol Model 20:2851–2856

    Article  Google Scholar 

  • Bramanti L, Vielmini I, Rossi S, et al (2014) Demographic parameters of two populations of red coral (Corallium rubrum) in the North Western Mediterranean. Mar Biol 161:1015–1026. https://doi.org/10.1007/s00227-013-2383-5

    Article  Google Scholar 

  • Bramanti L, Iannelli M, Fan TY, et al (2015) Demographic models forecast the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs 34: 505–515. https://doi.org/10.1007/s00338-015-1269-z

    Article  Google Scholar 

  • Bramanti L, Benedetti MC, Cupido R, et al (2017) Demography of animal forests: the example of Mediterranean Gorgonians. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 529–548. https://doi.org/10.1007/978-3-319-17001-5_13-1

    Google Scholar 

  • Brault S, Caswell H (1993) Pod-specific demography of killer whales (Orcinus orca). Ecology 74:1444–1454

    Article  Google Scholar 

  • Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord. Nor Mar Biol 160:139–153

    Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675

    Article  Google Scholar 

  • Burgess S, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 701–713

    Chapter  Google Scholar 

  • Butler MJ, Paris CB, Goldstein JS, et al (2011) Behavior constrains the dispersal of long-lived spiny lobster larvae. Mar Ecol Progr Ser 422:223–237

    Article  Google Scholar 

  • Caroselli E, Zaccanti F, Mattioli G, et al (2012) Growth and demography of the solitary scleractinian coral Leptosammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848. https://doi.org/10.1371/journal.pone.0037848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caswell H (2001) Matrix population models, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Cau A, Bramanti L, Cannas R, et al (2016) Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice. Sci Rep 6:23322. https://doi.org/10.1038/srep23322

  • Cau A, Follesa MC, Moccia D, et al (2017a) Leiopathes glaberrima millennial forest from SW Sardinia as nursery ground for the small spotted catshark Scyliorhinus canicula. Aquat Conserv Mar Freshw Ecosyst 27:731–735. https://doi.org/10.1002/aqc.2717

    Article  Google Scholar 

  • Cau A, Moccia D, Follesa MC, et al (2017b) Coral forests diversity in the outer shelf of the south Sardinian continental margin. Deep-Sea Res Part 1 Oceanogr Res Pap 122:60–70. https://doi.org/10.1016/j.dsr.2017.01.016

    Article  Google Scholar 

  • Cerrano C, Danovaro R, Gambi C, et al (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19:153–167. https://doi.org/10.1007/s10531-009-9712-5

    Article  Google Scholar 

  • Costantini F, Taviani M, Remia A, et al (2010) Deep-water Corallium rubrum L. (1758) from the Mediterranean sea: preliminary genetic characterization. Mar Ecol 31:261–269

    Article  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • Crouse D, Crowder L, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423. https://doi.org/10.2307/1939225

    Article  Google Scholar 

  • Danovaro R, Aguzzi J, Fanelli E, et al (2017) An ecosystem-based deep-ocean strategy. Science 355:452 LP-454

    Article  Google Scholar 

  • Deidun A, Andaloro F, Bavestrello G, et al (2015) First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital J Zool 82:271–280. https://doi.org/10.1080/11250003.2014.986544

    Article  Google Scholar 

  • De Mol B, Henriet JP, Canals M (2005) Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 137–156

    Google Scholar 

  • D’Onghia G, Indennidate A, Giove A, et al (2011) Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province. Mar Ecol Progr Ser 443:95–110

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Carlucci R, et al (2012) Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One 7:e44509

    Article  PubMed  PubMed Central  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water community (Galicia Bank, NW Spain). Mar Ecol Progr Ser 277:13–23

    Article  Google Scholar 

  • Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Progr Ser 418:87–104. https://doi.org/10.3354/meps08823

    Article  Google Scholar 

  • Edmunds PJ, Elahi R (2007) The demographics of a 15-year decline in cover of the Caribbean reef coral Montastrea annularis. Ecol Monogr 77:3–18

    Article  Google Scholar 

  • Fox AD, Henry LA, Corne DW, et al (2016) Sensitivity of marine protected area network connectivity to atmospheric variability. R Soc Open Sci 3:160494. https://doi.org/10.1098/rsos.160494

    Article  PubMed  PubMed Central  Google Scholar 

  • Freiwald A, Roberts MJ (2005) Cold water corals and ecosystems. Springer, Berlin, Heidelberg, 1243 pp

    Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, et al (2004) Cold-water coral reefs: out of sight – no longer out of mind. Biodiversity series 22. UNEP World Conservation Monitoring Centre, Cambridge, 86 pp. https://archive.org/details/coldwatercoralre04frei

  • Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74

    Article  Google Scholar 

  • Freiwald A, Rogers A, Hall-Spencer J, et al (2017) Global distribution of cold-water corals (version 3.0). Second update to the dataset in Freiwald et al (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John Guinotte. Cambridge, UK: UNEP World Conservation Monitoring Centre. http://data.unep-wcmc.org/datasets/3

  • Frier BW (2000) Demography. In: Bowman AK, Garnsey P, Rath-Bone D (eds) The Cambridge Ancient History, vol 11, 2nd edn. Cambridge University Press, Cambridge, pp 787–816

    Chapter  Google Scholar 

  • Fujiwara M, Caswell H (2001) Demography of the endangered North Atlantic right whale. Nature 414:537–541

    Article  CAS  PubMed  Google Scholar 

  • Gallmetzer I, Haselmair A, Velimirov B (2010) Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci 90:1–10

    Article  Google Scholar 

  • Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978

    Article  Google Scholar 

  • Garrabou J, Sala E, Linares C, et al (2017) Re-shifting the ecological baseline for the overexploited Mediterranean red coral. Sci Rep 7:42404. https://doi.org/10.1038/srep42404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber LR, Heppell SS, Ballantyne F, et al (2005) The role of dispersal and demography in determining the efficacy of marine reserves. Can J Fish Aquat Sci 62:863–871

    Article  Google Scholar 

  • GFCM (General Fisheries Commission for the Mediterranean Scientific Advisory Committee SAC) (2011) Report of the Workshop on the Regional Management Plan on Red Coral in the Mediterranean. Brussels, 21–22 January 2014. http://www.fao.org/3/a-ax793e.pdf

  • Gori A, Orejas C, Madurell T, et al (2013) Bathymetrical distribution and size structure of cold water coral populations in the Cap de Creus and Lacaze-Duthiers canons (Northwestern Mediterranean). Biogeosciences 10:2049–2060

    Article  Google Scholar 

  • Guizien K, Bramanti L (2014) Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age structure. Theor Biol Forum 107:47–56

    PubMed  Google Scholar 

  • Guizien K, Brochier T, Duchene JC, et al (2006) Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three- dimensional stochastic model. Mar Ecol Progr Ser 311:47–66

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmentedlandscape. Nature 404:755–758

    Article  CAS  PubMed  Google Scholar 

  • Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci 103:6067–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Progr Ser 7:207–226

    Article  Google Scholar 

  • Hughes TP (1984) Population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 123:778–795

    Article  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Jimenez C, Orejas C (2017) The Builders of the Oceans – Part II: Corals from the past to the present (The Stone from the Sea). In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 657–697

    Google Scholar 

  • Katz CH, Cobb JS, Spaulding M (1994) Larval behavior, hydrodynamic transport, and potential offshore-to-inshore recruitment in the American lobster Homarus americanus. Mar Ecol Progr Ser 103:265–272

    Article  Google Scholar 

  • Kuhrt A (1995) The Ancient near east c. 3000–330 B.C.E, vol 2. Routledge, London, p 695

    Google Scholar 

  • Lancaster J McCallum S, Lowe AC, et al (2014) Development of detailed ecological guidance to support the application of the Scottish MPA selection guidelines in Scotland’s seas. Scottish Natural Heritage Commissioned Report No.491. Coral Gardens – supplementary document

    Google Scholar 

  • Larsson AI, Jarnegren J, Stromberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222

    PubMed  PubMed Central  Google Scholar 

  • Lartaud F, Pareige S, De Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196

    Article  Google Scholar 

  • Lartaud F, Galli G, Raza A, et al (2017) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 1–32. https://doi.org/10.1007/978-3-319-17001-5_15-1

    Google Scholar 

  • Lasker HR (1990) Clonal propagation and population dynamics of a gorgonian coral. Ecology 71:1578–1589

    Article  Google Scholar 

  • Leslie JPH (1945) On the use of matrices in certain population mathematics. Biometrika 33:183–212

    Article  CAS  PubMed  Google Scholar 

  • Leslie JPH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35:213–245

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lewis EG (1942) On the generation and growth of a population. Sankhya 6:93–96

    Google Scholar 

  • Linares C, Coma R, Zabala M (2008) Effects of a mass mortality event on gorgonian reproduction. Coral Reefs 27:27–34. https://doi.org/10.1007/s00338-007-0285-z

    Article  Google Scholar 

  • Linares C, Zabala M, Garrabou J, et al (2010) Assessing the impact of diving in coralligenous communities: the usefulness of demographic studies of red gorgonian populations. Sci Rep Port-Cros Natl Park, Fr 24:161–184

    Google Scholar 

  • Luiz OJ, Allen AP, Robertson DR, et al (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci 110:16498–16502. https://doi.org/10.1073/pnas.1304074110

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier C, Bils F, Weinbauer MG, et al (2013) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:7617–7640

    Article  Google Scholar 

  • Malthus TR (1798) An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr Goodwin, M Condorcet and Other Writers, 1st edn. J. Johnson in St Paul’s Church-yard, London. Retrieved 20 June 2015. via Internet Archive

    Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, et al (2004) A new method for measuring growth and age in the precious Mediterranean red coral Corallium rubrum (L.). Coral Reefs 23:423–432

    Article  Google Scholar 

  • Martínez-Quintana A, Bramanti L, Viladrich N, et al (2015) Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar Biol 162:309–318

    Article  Google Scholar 

  • Mastrototaro F, D’Onghia G, Corriero G, et al (2010) Biodiversity of the white coral ecosystem off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430

    Google Scholar 

  • Molnár PK, Lewis MA, Derocher AE (2014) Estimating Allee dynamics before they can be observed: polar bears as a case study. PLoS One 9:e85410. https://doi.org/10.1371/journal.pone.0085410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison CL, Baco AR, Nizinski MS, et al (2015) Population connectivity of deep-sea corals. In: Hourigan TF, Etnoyer PJ, Cairns SD (ed) The state of deep-sea coral and sponge ecosystems of the United States: 2015. NOAA Technical Memorandum X. NOAA, Silver Spring, pp 12-1–12-30.

    Google Scholar 

  • Movilla J, Orejas C, Calvo E, et al (2014) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686

    Article  Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255–264

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, et al (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 307:37–51

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65. https://doi.org/10.3354/meps09104

    Article  Google Scholar 

  • OSPAR Commission (2015) OSPAR Threatened and/or Declining Habitats 2015. http://www.ospar.org/work-areas/bdc/species-habitats/list-of-threatened-declining-species-habitats. Data http://www.emodnet-seabedhabitats.eu/download

  • Priori C, Mastascusa V, Erra F, et al (2013) Demography of deep-dwelling red coral populations. Age and reproductive structure assessment. Estuar Coast Shelf Sci 116:1–7

    Article  Google Scholar 

  • Quattrini AM, Etnoyer PJ, Doughty C, et al (2014) A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep-Sea Res Part 2 Top Stud Oceanogr 99:92–102

    Article  Google Scholar 

  • Ricklefs RE, Miller GL (2000) Ecology. WH Freeman and Co, New York City, 849 pp

    Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Progr Ser 327:1–14

    Article  CAS  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547. https://doi.org/10.1126/science.1119861

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, New York, p 334

    Google Scholar 

  • Rossi S, Tsounis G, Orejas C, et al (2008) Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol 154:533–545

    Article  Google Scholar 

  • Rossi S, Bramanti L, Gori A, et al (2017a) Animal forests of the wold: an overview. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 1–28

    Google Scholar 

  • Rossi A, Scordamaglia E, Bellingeri M, et al (2017b) Demography of the bottlenose dolphin Tursiops truncatus (Mammalia: Delphinidae) in the Eastern Ligurian Sea (NW Mediterranean): quantification of female reproductive parameters. Eur Zool J 84. https://doi.org/10.1080/24750263.2017.1334839

    Article  Google Scholar 

  • Santangelo G, Abbiati M (2001) Red coral: conservation and management of an overexploited Mediterranean species. Aquat Conserv Mar Freshw Ecosyst 11:253–259

    Article  Google Scholar 

  • Santangelo G, Bramanti L (2006) Ecology through time, an overview. Riv Biol/Biol Forum 99:395–424

    Google Scholar 

  • Santangelo G, Bramanti L, Iannelli M (2007) Population dynamics and conservation biology of the over-exploited Mediterranean Red coral. J Theor Biol 244:416–423

    Article  PubMed  Google Scholar 

  • Santangelo G, Carletti E, Maggi E, et al (2003) Reproduction and population of the sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Progr Ser 248:99–108

    Article  Google Scholar 

  • Santangelo G, Bramanti L, Rossi S, et al (2012) Patterns of variation in recruitment and post-recruitment processes of the Mediterranean precious gorgonian coral Corallium rubrum. J Exp Mar Biol Ecol 411:7–13

    Article  Google Scholar 

  • Santangelo G, Cupido R, Cocito S, et al (2015) Effects of increased mortality on gorgonian corals (Cnidaria, Octocorallia): different demographic features may lead affected populations to unexpected recovery and new equilibrium points. Hydrobiologia 759:171–187. https://doi.org/10.1007/s10750-015-2241-1

    Article  CAS  Google Scholar 

  • Savini A, Vertino A, Marchese F, et al (2014) Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e87108

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheidel W (2007) Demography. In: Scheidel W, Morris I, Saller R (eds) The Cambridge economic history of the Greco-Roman world, Cambridge, pp 38–86

    Google Scholar 

  • Shannon RE (1975) Simulation modelling and methodology. ACM SIGSIM Simulation 8:33–38. ACM, New York. https://doi.org/10.1145/1102766.1102770

    Article  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • Thiem O, Ravagnan E, Fosså JH, et al (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219

    Article  Google Scholar 

  • Tsounis G, Rossi S, Grigg R, et al (2010) The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev 48:161–221

    Article  Google Scholar 

  • Tsounis G, Rossi S, Bramanti L, et al (2013) Management hurdles for sustainable harvesting of Corallium rubrum. Mar Policy 39:361–364

    Article  Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique 10:113–121

    Google Scholar 

  • Volterra V (1931) Variations and fluctuations of the number of individuals in animal species living together. In: Chapman RN (ed) Animal Ecology. McGraw-Hill, New York

    Google Scholar 

  • Waller RG (2005) Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 691–700

    Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

Cross References

  • Altuna A, Poliseno A (this volume) Taxonomy, genetics and biodiversity of Mediterranean deep-sea corals and cold-water corals

    Google Scholar 

  • Bo M, Bavestrello G (this volume) Mediterranean black coral communities

    Google Scholar 

  • Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water corals

    Google Scholar 

  • Knittweis L, Evans J, Aguilar R, et al (this volume) Recent discoveries of extensive cold-water coral assemblages in Maltese waters

    Google Scholar 

  • Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bramanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bramanti, L., Santangelo, G., Benedetti, M.C., Iannelli, M., Guizien, K. (2019). 37 Demography and Conservation of Deep Corals: The Study of Population Structure and Dynamics. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_37

Download citation

Publish with us

Policies and ethics