Skip to main content

A Quadcopter and Mobile Robot Cooperative Task Using Visual Tags Based on Augmented Reality ROS Package

  • Chapter
  • First Online:
Robot Operating System (ROS)

Abstract

The objective of this chapter is to provide a simple tutorial on how to use a virtual reality tag (VR-TAG) tool and a Robot Operating System–compatible simulated multirotor vehicle to achieve the position of a small mobile ground robot, making possible the creation of a cooperative schema among them. The great novelty of the proposed architecture is that the ground robots do not have any onboard odometry, and all the position information is provided by the multirotor using a camera and the VR-TAGs to evaluate it. This kind of architecture poses value for real-world cooperative multiple robot research, in which the cost of constructing a large number of small robots makes practical applications inviable. In such cases, simple robots with minimal control hardware and sensors are a good alternative, and offboard positioning and control of these robots can be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Federation, RoboCupSoccer - Small Size (2016), http://www.robocup.org/leagues/7

  2. A. Community, ARToolKit Documentation (2017), https://www.artoolkit.org/documentation/

  3. H. Kato, M. Billinghurst, I. Poupyrev, ARToolKit version 2.33: A software library for Augmented Reality Applications. Manual. (2000), 44, http://www.hitl.washington.edu/research/shared_space/download/

  4. ROS.org, Ros package for ar-toolkit - ar_tools (2017), http://wiki.ros.org/ar_tools

  5. V. T. R. C. of Finland, Augmented Reality / 3D Tracking (2017), http://virtual.vtt.fi/virtual/proj2/multimedia/

  6. ROS.org, Ros package for alvar - ar_track_alvar (2017), http://wiki.ros.org/ar_track_alvar

  7. U. de Córdoba, ArUco: a minimal library for Augmented Reality applications based on OpenCV (2017), http://www.uco.es/investiga/grupos/ava/node/26

  8. ROS.org, Ros package for aruco -rar_sys (2017), http://wiki.ros.org/ar_sys

  9. A. R. Laboratory, AprilTag: A robust and flexible visual fiducial system (2011), https://april.eecs.umich.edu/papers/details.php?name=olson2011tags

  10. ROS.org, Ros package for april tags - apriltags_ros (2017), http://wiki.ros.org/apriltags_ros

  11. M. Fiala, ARTag, a fiducial marker system using digital techniques, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol. 2 (2005), pp. 590–596. https://doi.org/10.1109/CVPR.2005.74

  12. K. Okuyama, T. Kawasaki, V. Kroumov, Localization and position correction for mobile robot using artificial visual landmarks, in Proceedings of the 2011 International Conference on Advanced Mechatronic Systems (2011), pp. 414–418. https://doi.org/10.1504/IJAMECHS.2012.048395

  13. L. George, A. Mazel, Humanoid robot indoor navigation based on 2D bar codes: application to the NAO robot, in 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2013), pp. 329–335. https://doi.org/10.1109/HUMANOIDS.2013.7029995

  14. T. H. Shuyuan Wang, ROS-Gazebo Supported Platform for Tag-in-Loop Indoor Localization of Quadrocopter. Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol. 531 (2016)

    Google Scholar 

  15. R. Limosani, A. Manzi, L. Fiorini, F. Cavallo, P. Dario, Enabling global robot navigation based on a cloud robotics approach. Int. J. Soc. Robot. 8(3), 371–380 (2016). https://doi.org/10.1007/s12369-016-0349-8

  16. C. Robotics, Virtual Robot Experimentation Platform (2017), http://www.coppeliarobotics.com/

  17. A. Cantieri, Book chapter’s online reporitory (2018), https://sourceforge.net/projects/rosbook-2018/files/?source=navbar

Download references

Acknowledgements

This work was funded by the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico - “National Counsel of Technological and Scientific Development”, to which the authors are grateful for the support given to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Rogério Cantieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantieri, A.R. et al. (2019). A Quadcopter and Mobile Robot Cooperative Task Using Visual Tags Based on Augmented Reality ROS Package. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 778. Springer, Cham. https://doi.org/10.1007/978-3-319-91590-6_6

Download citation

Publish with us

Policies and ethics