Skip to main content

Abstract

It is well known that the development of future automated driving faces big challenges regarding testing and validation. One strategy to tackle the drastically increased complex interaction of vehicle, driver, and environment is the so-called front-loading approach. This involves virtual development of new vehicle functions enabling early stage testing and validation. Within the funded project Technology Concepts for Advanced Highly Automated Driving (TECAHAD), this front-loading approach was applied for a concept development of an automated driving system (ADS)—the Motorway Chauffeur (MWC)—fully responsible for longitudinal and lateral motion of a car on motorways. In the following, we provide an insight on early stage virtual development of this ADS. Topics range from high-level requirements and functional safety investigations to software architecture and major components of the virtual implementation. Finally, first simulation results are shown for some MWC use cases, motivating the planned future real vehicle prototype implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SAE International: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems (2014). https://doi.org/10.4271/J3016_201401.

  2. Winner, H.: ADAS, Quo Vadis, pp. 1557–1584. Springer International Publishing, Cham (2016)

    Google Scholar 

  3. ISO 22179:2009: Intelligent transport systems—Full speed range adaptive cruise control (FSRA) systems—Performance requirements and test procedures. Tech. rep., International Organization for Standardization (2009)

    Google Scholar 

  4. ISO 11270:2014: Intelligent transport systems—Lane keeping assistance systems (LKAS)—Performance requirements and test procedures. Tech. rep., International Organization for Standardization (2014)

    Google Scholar 

  5. ISO 17387:2008: Intelligent transport systems—Lane change decision aid systems (LCDAS)—Performance requirements and test procedures. Tech. rep., International Organization for Standardization (2008)

    Google Scholar 

  6. MATLAB: Version 7.14 (R2012a).: The MathWorks Inc., Natick, Massachusetts (2012)

    Google Scholar 

  7. IPG Automotive GmbH.: CarMaker 4.0. Karlsruhe, Germany (2012)

    Google Scholar 

  8. Neubauer, L.: Absolute Position Estimation with GPS/INS Sensor Fusion

    Google Scholar 

  9. Riekert, P., Schunck, T.: Zur Fahrmechanik des gummibereiften Kraftfahrzeugs. Ingenieur-Archiv 11, 210–224 (1940). https://doi.org/10.1007/BF02086921

  10. Kosecka, J., Blasi, R., Taylor, C., Malik, J.: A comparative study of vision-based lateral control strategies for autonomous highway driving. In: Proceedings of IEEE International Conference on Robotics and Automation, 1998, vol. 3, pp. 1903–1908 (1998)

    Google Scholar 

  11. Nestlinger, G., Stolz, M.: Bumpless transfer for convenient lateral car control handover. IFAC-PapersOnLine 49(15), 132–138 (2016). In: 9th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2016, Leipzig, Germany, 29 June–1 July 2016

    Google Scholar 

  12. ISO/DIS 26262-1—Road Vehicles Functional Safety Part 1 Glossary. Tech. rep., Geneva, Switzerland (2009)

    Google Scholar 

  13. Martin, H., Tschabuschnig, K., Bridal, O., Watzenig, D.: Functional Safety of Automated Driving Systems: Does ISO 26262 Meet the Challenges, pp. 387–416. Springer International Publishing, Cham (2017)

    Google Scholar 

  14. Stüker, D.: Heterogene Sensordatenfusion zur robusten Objektverfolgung im automobilen Straßenverkehr. P.h.d. Thesis, Carl von Ossietzky-Universität Oldenburg (2004)

    Google Scholar 

  15. Urmson, C., Anhalt, J., Bae, H., Bagnell, J., Baker, C., Bittner, R., Brown, T., Clark, M.N., Darms, M., Demitrish, D., Dolan, J., Duggins, D., Ferguson, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T., Kolski, S., Likhachev, M., Litkouhi, B., Kelly, A., McNaughton, M., Miller, N., Nickolaou, J., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Sadekar, V., Salesky, B., Seo, Y., Singh, S., Snider, J., Struble, J., Stentz, A., Taylor, M., Whittaker, W., Wolkowicki, Z., Zhang, W., Ziglar, J.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. (Special Issue on the 2007 DARPA Urban Challenge, Part I) 25(8), 425–466 (2008)

    Google Scholar 

  16. Hult, R., Tabar, R.S.: Path Planning for Highly Automated Vehicles. Mathesis, Gothenburg (2013)

    Google Scholar 

  17. Werling, M., Groll, L., Bretthauer, G.: Invariant trajectory tracking with a full-size autonomous road vehicle. IEEE Trans. Robot. 26(4), 758–765 (2010)

    Google Scholar 

  18. Li, X., Sun, Z., Zhu, Q., Liu, D.: A unified approach to local trajectory planning and control for autonomous driving along a reference path. In: 2014 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1716–1721 (2014)

    Google Scholar 

  19. Zhang, S., Deng, W., Zhao, Q., Sun, H., Litkouhi, B.: Dynamic trajectory planning for vehicle autonomous driving. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4161–4166 (2013). https://doi.org/10.1109/SMC.2013.709

  20. Rupp, A., Stolz, M.: Eine erweitere bewertungsfunktion fr umfassende trajektorienplanung auf autobahnen. pp. 337–356. VDI Verlag GMBH, Deutschland (2016)

    Google Scholar 

  21. Schramm, D., Hiller, M., Bardini, R.: Single Track Models, pp. 223–253. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgements

The publication was written at VIRTUAL VEHICLE Research Center in Graz, Austria. The authors would like to acknowledge the financial support of the COMET-K2—Competence Centers for Excellent Technologies Programme of the Federal Ministry for Transport, Innovation and Technology (bmvit), the Federal Ministry for Digital, Business and Enterprise (bmdw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).

They would furthermore like to express their thanks to their supporting industrial and scientific project partners, namely AVL List GmbH, MAGNA STEYR Engineering AG & Co KG and to the Institute of Automation and Control at the Technical University of Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nestlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nestlinger, G. et al. (2019). Virtual Concept Development on the Example of a Motorway Chauffeur. In: Waschl, H., Kolmanovsky, I., Willems, F. (eds) Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions . Lecture Notes in Control and Information Sciences, vol 476. Springer, Cham. https://doi.org/10.1007/978-3-319-91569-2_8

Download citation

Publish with us

Policies and ethics