Skip to main content

Comparison of Shallow Water Models for Rapid Channel Flows

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Abstract

To model shallow free surface flows, the Saint-Venant Equations (SVE) are a convenient simplification of the incompressible Navier–Stokes Equations (NSE). In the present study, we compare the two models for one-dimensional channel flow over a hump (cf. Behr (XNS simulation program, 2016 [5]), Küsters (Comparison of a Navier–Stokes and a shallow water model using the example of flow over a semi-circular bump, 2013 [8]), Noelle et al. (J Comput Phys 226(1):29–58, 2007 [10]), Sikstel (Comparison of hydrostatic and non-hydrostatic shallow water models, 2016 [13])). Our numerical experiments show that the SVE fail for some rather standard transcritical flows, where the two models compute different water heights ahead of and different shock speeds behind the hump. Using numerical computations as well as a formal Cauchy–Kowalevski argument, we give a qualitative explanation of the shortcoming of the SVE. In addition, we examine a recently developed non-hydrostatic shallow water model Sainte-Marie et al. (Discrete and Cont Dyn Syst Ser B 20(4):361–388, 2014 [12]) which proposes to produce physically more realistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Aïssiouene, M.O. Bristeau, E. Godlewski, J. Sainte-Marie, A robust and stable numerical scheme for a depth-averaged Euler system. arXiv preprint arXiv:1506.03316 (2015)

  2. E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discret. Cont. Dyn. Syst. B 5(2), 189–214 (2005)

    Article  MathSciNet  Google Scholar 

  3. E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MathSciNet  Google Scholar 

  4. A.J.C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leurs lits. Comptes Rendus des Séances de l’Académie des Sci. 73, 237–240 (1871)

    Google Scholar 

  5. M. Behr, XNS Simulation Program. Chair for Computational Analysis of Technical Systems. RWTH Aachen University (2016). http://www.cats.rwth-aachen.de/about/software/simulation/xns

  6. P. Constantin, C. Foias, Navier-Stokes Equations (University of Chicago Press, 1988)

    Google Scholar 

  7. D.F. Griffiths, The ‘No Boundary Condition’ outflow boundary condition. Int. J. Numer. Methods Fluids 24(4), 393–411 (1997)

    Article  MathSciNet  Google Scholar 

  8. A. Küsters, Comparison of a Navier-Stokes and a shallow-water model using the example of flow over a semi-circular bump. Master’s thesis, RWTH Aachen, 2013

    Google Scholar 

  9. C.D. Levermore, Entropy-based moment closures for kinetic equations. Trans. Theory Stat. Phys. 26(4–5), 591–606 (1997)

    Article  MathSciNet  Google Scholar 

  10. S. Noelle, Y. Xing, C.W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226(1), 29–58 (2007)

    Article  MathSciNet  Google Scholar 

  11. T.C. Papanastasiou, N. Malamataris, K.R. Ellwood, A new outflow boundary condition. Int. J. Numer. Methods Fluids 14, 587–608 (1992)

    Article  MathSciNet  Google Scholar 

  12. J. Sainte-Marie, M.O. Bristeau, A. Mangeney, N. Seguin et al., An energy-consistent depth-averaged Euler system: derivation and properties. Discrete and Cont. Dyn. Syst. Ser. B 20(4), 361–388 (2014)

    MathSciNet  MATH  Google Scholar 

  13. A. Sikstel, Comparison of hydrostatic and non-hydrostatic shallow water models. Master’s thesis, RWTH Aachen, 2016

    Google Scholar 

  14. R. Temam, On the Euler equations of incompressible perfect fluids. Séminaire Équations aux dérivées partielles (Polytechnique) (1974), pp. 1–14

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emmanuel Audusse, Jacques Sainte-Marie and Marek Behr for sharing their insights, and Henning Sauerland for help with the NSE solver.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Noelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elgeti, S., Frings, M., Küsters, A., Noelle, S., Sikstel, A. (2018). Comparison of Shallow Water Models for Rapid Channel Flows. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_45

Download citation

Publish with us

Policies and ethics