Skip to main content

Astrophysical Fluid Dynamics and Applications to Stellar Modeling

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

  • 1284 Accesses

Abstract

The modeling of astrophysical objects poses a challenging multiscale multiphysics problem. Because of their large spatial extent, the description of physical processes dominating the formation, structure, and evolution of such objects is typically based on effective theories such as fluid dynamics or thermodynamics. The modeling ansatz resulting from this approach is the Euler equations in combination with appropriate source terms. In contrast to terrestrial systems, the astrophysical equations of state are usually more complex and the ranges of relevant scales in space, time, density, velocity etc., in the considered objects are orders of magnitude wider. Simulations therefore require an efficient description of physical effects, elaborate numerical techniques, and models of unresolved phenomena. We exemplify this by focusing on processes in stars. This multiphysics problem is characterized by coupling the compressible Euler equations to the simultaneous effects of gravity, nuclear reactions, hydrodynamic instabilities, and mixing processes in the stellar fluid. It implies a multis because the processes act on scales in space and time that can easily be separated by ten orders of magnitude. The traditional astrophysical approach to this challenge—one-dimensional models parametrizing the description of unresolved effects—lacks predictive power. The dramatic increase in computational power, however, enables multidimensional dynamical simulations. They pave the way to the next generation of stellar models and promise new insights into the physical processes in stars. We discuss to which degree the currently applied techniques are able to cope with the scale problems. Among other techniques, we point out the importance of finding algorithms that allow for efficient parallelization and the use of problem-adapted geometries of the discretization grids. Further progress critically depends on continuous improvement of the methods, and input from applied mathematics will play a key role in this development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012)

    Article  Google Scholar 

  2. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, AJ 116, 1009 (1998)

    Google Scholar 

  3. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, The Supernova Cosmology Project, ApJ 517, 565 (1999)

    Article  Google Scholar 

  4. W. Hillebrandt, J.C. Niemeyer, ARA&A 38, 191 (2000)

    Google Scholar 

  5. W. Hillebrandt, M. Kromer, F.K. Röpke, A.J. Ruiter, Front. Phys. 8, 116 (2013)

    Article  Google Scholar 

  6. F. K. Röpke, W. Schmidt, in Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, ed. by W. Hillebrandt, F. Kupka (Springer, Berlin, 2009), pp. 255–289

    MATH  Google Scholar 

  7. M. Reinecke, W. Hillebrandt, J.C. Niemeyer, R. Klein, A. Gröbl, A&A 347, 724 (1999)

    Google Scholar 

  8. S. Osher, J.A. Sethian, J. Comput. Phys. 79, 12 (1988)

    Article  MathSciNet  Google Scholar 

  9. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  10. M. Reinecke, W. Hillebrandt, J.C. Niemeyer, F. Röpke, W. Schmidt, D. Sauer, in Proceedings of the 11th Workshop on “Nuclear Astrophysics”, Ringberg Castle, ed. by W. Hillebrandt, E. Müller (Max-Planck-Institut für Astrophysik, Garching, 2002), MPA/P13, pp. 54–56

    Google Scholar 

  11. F.K. Röpke, W. Hillebrandt, A&A 431, 635 (2005)

    Article  Google Scholar 

  12. F.K. Röpke, W. Hillebrandt, W. Schmidt, J.C. Niemeyer, S.I. Blinnikov, P.A. Mazzali, ApJ 668, 1132 (2007)

    Article  Google Scholar 

  13. M. Fink, M. Kromer, I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, S.A. Sim, R. Pakmor, A.J. Ruiter, W. Hillebrandt, MNRAS 438, 1762 (2014)

    Google Scholar 

  14. R. Kippenhahn, A. Weigert, A. Weiss, Stellar Structure and Evolution (Springer, Berlin, 2012)

    Book  Google Scholar 

  15. W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F. Miczek, F.K. Röpke, J. Sci. Comput. 1–24 (2017)

    Google Scholar 

  16. F. Miczek, F.K. Röpke, P.V.F. Edelmann, A&A 576, A50 (2015)

    Article  Google Scholar 

  17. W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F.K. Röpke, in Workshop on Low Velocity Flows, Paris, 5–6 November 2015, ESAIM: Proceedings and Surveys, ed. by S. Dellacherie, et al., vol. 56 (2017). In print

    Google Scholar 

  18. S. Dellacherie, J. Comput. Phys. 229(4), 978 (2010)

    Article  MathSciNet  Google Scholar 

  19. S. Schochet, J. Differ. Equ. 114(2), 476 (1994)

    Article  MathSciNet  Google Scholar 

  20. S. Klainerman, A. Majda, Commun. Pure Appl. Math. 34(4), 481 (1981)

    Article  Google Scholar 

  21. P.M. Gresho, S.T. Chan, Int. J. Numer. Methods Fluids 11(5), 621 (1990)

    Article  Google Scholar 

  22. E. Turkel, Ann. Rev. Fluid Mech. 31, 385 (1999)

    Article  Google Scholar 

  23. A.S. Almgren, J.B. Bell, M. Zingale, J. Phys. Conf. Ser. 78(1), 012085 (2007)

    Article  Google Scholar 

  24. M.S. Liou, J. Comput. Phys. 214(1), 137 (2006)

    Article  MathSciNet  Google Scholar 

  25. M. Viallet, I. Baraffe, R. Walder, A&A 531, A86 (2011)

    Article  Google Scholar 

  26. M. Viallet, T. Goffrey, I. Baraffe, D. Folini, C. Geroux, M.V. Popov, J. Pratt, R. Walder, A&A 586, A153 (2016)

    Google Scholar 

  27. K. Kifonidis, E. Müller, A&A 544, A47 (2012)

    Article  Google Scholar 

  28. C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Technical report, NASA Technical Memorandum (2001)

    Google Scholar 

  29. N. Hammer, F. Jamitzky, H. Satzger, M. Allalen, A. Block, A. Karmakar, M. Brehm, R. Bader, L. Iapichino, A. Ragagnin, V. Karakasis, D. Kranzlmüller, A. Bode, H. Huber, M. Kühn, R. Machado, D. Grünewald, P.V.F. Edelmann, F.K. Röpke, M. Wittmann, T. Zeiser, G. Wellein, G. Mathias, M. Schwörer, K. Lorenzen, C. Federrath, R. Klessen, K. Bamberg, H. Ruhl, F. Schornbaum, M. Bauer, A. Nikhil, J. Qi, H. Klimach, H. Stüben, A. Deshmukh, T. Falkenstein, K. Dolag, M. Petkova in Parallel Computing: On the Road to Exascale, Proceedings of the International Conference on Parallel Computing, ParCo 2015, 1–4 September 2015, Edinburgh, Scotland, UK, ed. by G.R. Joubert, H. Leather, M. Parsons, F.J. Peters, M. Sawyer. Advances in Parallel Computing, vol. 27 (IOS Press, 2016), pp. 827–836

    Google Scholar 

  30. P. Chandrashekar, C. Klingenberg, SIAM J. Sci. Comput. 37(3), B382 (2015)

    Article  Google Scholar 

  31. V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, Int. J. Numer. Methods Fluids 81(2), 104 (2016)

    Article  Google Scholar 

  32. N. Ivanova, S. Justham, X. Chen, O. De Marco, C.L. Fryer, E. Gaburov, H. Ge, E. Glebbeek, Z. Han, X.D. Li, G. Lu, T. Marsh, P. Podsiadlowski, A. Potter, N. Soker, R. Taam, T.M. Tauris, E.P.J. van den Heuvel, R.F. Webbink, A&A Rev. 21, 59 (2013)

    Google Scholar 

  33. V. Springel, MNRAS 401, 791 (2010)

    Google Scholar 

  34. S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, ApJ 816(1), L9 (2016)

    Google Scholar 

  35. R. Pakmor, A. Bauer, V. Springel, MNRAS 418, 1392 (2011)

    Google Scholar 

  36. S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, E. Müller, MNRAS 462(1), L121 (2016)

    Google Scholar 

Download references

Acknowledgements

FKR thanks the organizers of the “Hyp2016” conference for the kind invitation to this stimulating event. Collaboration and discussions with the fluid mechanics group at the Mathematics Department of the University of Würzburg—in particular with Christian Klingenberg, Markus Zenk, Wasilij Barsukow, and Jonas Berberich—are gratefully acknowledged. The examples discussed in this chapter reflect in large parts results of the work of Fabian Miczek, Philipp Edelmann, Sebastian Ohlmann, and many others in the supernova/stellar astrophysics group at the Max Planck Institute for Astrophysics, Garching, the Astrophysics Group at the University of Würzburg, and the “Physics of Stellar Objects” group at the Heidelberg Institute for Theoretical Studies. The simulations of common envelope phases were carried out in close collaboration with Rüdiger Pakmor and Volker Springel. The work of FKR is supported by the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich K. Röpke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Röpke, F.K. (2018). Astrophysical Fluid Dynamics and Applications to Stellar Modeling. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_40

Download citation

Publish with us

Policies and ethics