Skip to main content

Correction Procedure via Reconstruction Using Summation-by-Parts Operators

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Abstract

The correction procedure via reconstruction (CPR, also known as flux reconstruction), is a high-order numerical scheme for conservation laws introduced by Huynh (2007), unifying some discontinuous Galerkin, spectral difference and spectral volume methods. A general framework of summation-by-parts (SBP) operators with simultaneous approximation terms (SATs) is presented, allowing semidiscrete stability for Burgers’ equation using nodal bases without boundary nodes or modal bases. The linearly stable schemes of Vincent et al. (2011, 2015) are embedded within this general kind of semidiscretisation. The contributed talk Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators given by Philipp Öffner extends these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.E. Lombard, D. Ekelschot et al., Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  Google Scholar 

  2. D.C.D.R. Fernández, P.D. Boom, D.W. Zingg, A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014)

    Article  MathSciNet  Google Scholar 

  3. D.C.D.R. Fernández, J.E. Hicken, D.W. Zingg, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  4. T.C. Fisher, M.H. Carpenter, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. Technical report NASA/TM-2013-217971, NASA, NASA Langley Research Center, Hampton VA 23681-2199, United States (2013)

    Google Scholar 

  5. T.C. Fisher, M.H. Carpenter, J. Nordström, N.K. Yamaleev, C. Swanson, Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  Google Scholar 

  6. G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)

    Article  MathSciNet  Google Scholar 

  7. G.J. Gassner, A.R. Winters, D.A. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)

    MathSciNet  Google Scholar 

  8. J. Glaubitz, H. Ranocha, P. Öffner, T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators II: modal filtering (2016), arXiv:1606.01056 [math.NA]. Submitted

  9. B. Gustafsson, H.O. Kreiss, J. Oliger, Time-Dependent Problems and Difference Methods, vol. 123 (Wiley, New York, 2013)

    Book  Google Scholar 

  10. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31 (Springer Science & Business Media, Berlin, 2006)

    MATH  Google Scholar 

  11. J.E. Hicken, D.W. Zingg, Summation-by-parts operators and high-order quadrature. J. Comput. Appl. Math. 237(1), 111–125 (2013)

    Article  MathSciNet  Google Scholar 

  12. J.E. Hicken, D.C.D.R. Fernández, D.W. Zingg, Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)

    Article  MathSciNet  Google Scholar 

  13. H. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in AIAA Paper 2007, vol. 4079 (2007)

    Google Scholar 

  14. H. Huynh, Z.J. Wang, P.E. Vincent, High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  15. A. Jameson, A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1–3), 348–358 (2010)

    Article  MathSciNet  Google Scholar 

  16. A. Jameson, P.E. Vincent, P. Castonguay, On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50(2), 434–445 (2012)

    Article  MathSciNet  Google Scholar 

  17. J. Nordström, P. Eliasson, New developments for increased performance of the SBP-SAT finite difference technique, IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach (Springer, Berlin, 2015), pp. 467–488

    Google Scholar 

  18. P. Olsson, J. Oliger, Energy and maximum norm estimates for nonlinear conservation laws. Technical report NASA-CR-195091, NASA, Research Institute for Advanced Computer Science, Moffett Field, CA, United States (1994)

    Google Scholar 

  19. H. Ranocha, SBP operators for CPR methods. Master’s thesis, TU Braunschweig (2016)

    Google Scholar 

  20. H. Ranocha, Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9, arXiv:1609.08029 [math.NA]

    Article  MathSciNet  Google Scholar 

  21. H. Ranocha, P. Öffner, T. Sonar, Extended skew-symmetric form for summation-by-parts operators (2015), arXiv:1511.08408 [math.NA]. Submitted

  22. H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: artificial dissipation (2016), arXiv:1606.00995 [math.NA]. Submitted

  23. H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar, Time discretisation and \({L}_2\) stability of polynomial summation-by-parts schemes with Runge–Kutta methods (2016), arXiv:1609.02393 [math.NA]. Submitted

  24. H. Ranocha, P. Öffner, T. Sonar, Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009, arXiv:1511.02052 [math.NA]

    Article  MathSciNet  Google Scholar 

  25. Z. Sun, C.W. Shu, Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations (2016), https://www.brown.edu/research/projects/scientific-computing/sites/brown.edu.research.projects.scientific-computing/files/uploads/Stability%20of%20the%20fourth%20order%20Runge-Kutta%20method%20for%20time-dependent%20partial.pdf. Submitted to Annals of Mathematical Sciences and Applications

  26. M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  27. E. Tadmor, Skew-selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103(2), 428–442 (1984)

    Article  MathSciNet  Google Scholar 

  28. E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  29. E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  30. P.E. Vincent, P. Castonguay, A. Jameson, Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230(22), 8134–8154 (2011)

    Article  MathSciNet  Google Scholar 

  31. P.E. Vincent, P. Castonguay, A. Jameson, A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Article  MathSciNet  Google Scholar 

  32. P.E. Vincent, A.M. Farrington, F.D. Witherden, A. Jameson, An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)

    Article  MathSciNet  Google Scholar 

  33. N. Wintermeyer, A.R. Winters, G.J. Gassner, D.A. Kopriva, An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry (2016), arXiv:1509.07096v2 [math.NA]

  34. F.D. Witherden, A.M. Farrington, P.E. Vincent, PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Comput. Phys. Commun. 185(11), 3028–3040 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ranocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Öffner, P., Ranocha, H., Sonar, T. (2018). Correction Procedure via Reconstruction Using Summation-by-Parts Operators. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_37

Download citation

Publish with us

Policies and ethics