Skip to main content

Numerical Viscosity in Large Time Step HLL-Type Schemes

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

We consider Large Time Step (LTS) methods, i.e., the explicit finite volume methods not limited by the Courant–Friedrichs–Lewy (CFL) condition. The original LTS method (LeVeque in SIAM J Numer Anal 22, 1985) was constructed as an extension of the Godunov scheme, and successive versions have been developed in the framework of Roe’s approximate Riemann solver. Recently, Prebeg et al. (in ESAIM: M2AN, in press, 2017) developed the LTS extension of the HLL and HLLC schemes. We perform the modified equation analysis and demonstrate that for the appropriate choice of the wave velocity estimates, the LTS-HLL scheme yields entropy-satisfying solutions. We apply the LTS-HLL(C) schemes to the one-dimensional Euler equations and consider the Sod shock tube, double rarefaction, and Woodward–Colella blast-wave problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. LeVeque, SIAM J. Numer. Anal. 19(6), 1091 (1982). https://doi.org/10.1137/0719080

  2. R. LeVeque, Commun. Pure Appl. Math. 37(4), 463 (1984). https://doi.org/10.1002/cpa.3160370405

  3. R. LeVeque, SIAM J. Numer. Anal. 22(6), 1051 (1985). https://doi.org/10.1137/0722063

  4. J. Murillo, P. García-Navarro, P. Brufau, J. Burguete, Int. J. Numer. Meth. Fluids 50(1), 63 (2006). https://doi.org/10.1002/fld.1036

  5. M. Morales-Hernández, P. García-Navarro, J. Murillo, J. Comput. Phys. 231(19), 6532 (2012). https://doi.org/10.1016/j.jcp.2012.06.017

  6. M. Morales-Hernández, J. Murillo, P. García-Navarro, J. Burguete, in Numerical Methods for Hyperbolic Equations, ed. by E.V. Cendón, A. Hidalgo, P. García-Navarro, L. Cea (CRC Press, 2012), pp. 141–148. https://doi.org/10.1201/b14172-17

  7. M. Morales-Hernández, M. Hubbard, P. García-Navarro, A 2D extension of a Large Time Step explicit scheme (CFL> 1) for unsteady problems with wet/dry boundaries. J. Comput. Phys. 263, 303–327 (2014). https://doi.org/10.1016/j.jcp.2014.01.019

  8. M. Morales-Hernández, A. Lacasta, J. Murillo, P. García-Navarro, Appl. Math. Model. 47, 294 (2017). https://doi.org/10.1016/j.apm.2017.02.043

  9. R. Xu, D. Zhong, B. Wu, X. Fu, R. Miao, Chinese Sci. Bull. 59(21), 2534 (2014). https://doi.org/10.1007/s11434-014-0374-7

  10. Z. Qian, C.-H. Lee, A class of Large Time Step godunov schemes for hyperbolic conservation laws and applications. J. Comput. Phys. 230(19), 7418–7440 (2011). https://doi.org/10.1016/j.jcp.2011.06.008

  11. K. Tang, A. Beccantini, C. Corre, Comput. Fluids 93, 74 (2014). https://doi.org/10.1051/m2an:2004016

  12. N.N. Makwana, A. Chatterjee, in 2015 IEEE International Conference on Computational Electromagnetics (ICCEM 2015) (Institute of Electrical and Electronics Engineers (IEEE), 2015), pp. 330–332. https://doi.org/10.1109/COMPEM.2015.7052651

  13. S. Lindqvist, H. Lund, in VII European Congress on Computational Methods in Applied Sciences and Engineering, ed. by M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Pleveris, Crete Island, Greece, 5–10 June 2016

    Google Scholar 

  14. M. Prebeg, T. Flåtten, B. Müller, Appl. Math. Model. 44, 124 (2017). https://doi.org/10.1016/j.apm.2016.12.010

  15. S. Lindqvist, P. Aursand, T. Flåtten, A.A. Solberg, SIAM J. Numer. Anal. 54(5), 2775 (2016). https://doi.org/10.1137/15M104935X

  16. M. Prebeg, T. Flåtten, B. Müller, Large Time Step HLL and HLLC schemes. ESAIM: M2AN. (2017 In press). https://doi.org/10.1051/m2an/2017051

  17. A. Harten, P.D. Lax, B. van Leer, SIAM Rev. 25(1), 35 (1983). https://doi.org/10.1137/1025002

  18. B. Einfeldt, SIAM J. Numer. Anal. 25(2), 294 (1988). https://doi.org/10.1137/0725021

  19. S. Davis, SIAM J. Sci. Stat. Comput. 9(3), 445 (1988). https://doi.org/10.1137/0909030

  20. E.F. Toro, M. Spruce, W. Speares, Shock Waves 4(1), 25 (1994). https://doi.org/10.1007/BF01414629

  21. P. Roe, J. Comput. Phys. 43(2), 357 (1981). https://doi.org/10.1016/j.jcp.2011.06.008

  22. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/b79761

  23. B. Einfeldt, C. Munz, P. Roe, B. Sjögreen, J. Comput. Phys. 92(2), 273 (1991). https://doi.org/10.1016/0021-9991(91)90211-3

  24. P. Batten, N. Clarke, C. Lambert, D. Causon, SIAM J. Sci. Comput. 18(6), 1553 (1997). https://doi.org/10.1137/S1064827593260140

  25. R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511791253

  26. G.A. Sod, J. Comput. Phys. 27(1), 1 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

  27. P. Woodward, P. Colella, J. Comput. Phys. 54(1), 115 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

Download references

Acknowledgements

The author was supported by the Research Council of Norway (234126/30) through the SIMCOFLOW project. I am grateful to my supervisors Tore Flåtten, Bernhard Müller, and Marica Pelanti for fruitful discussions. We would like to thank the anonymous reviewer for his helpful and constructive comments, which led to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Prebeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prebeg, M. (2018). Numerical Viscosity in Large Time Step HLL-Type Schemes. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_36

Download citation

Publish with us

Policies and ethics