Skip to main content

On the Transverse Diffusion of Beams of Photons in Radiation Therapy

  • Conference paper
  • First Online:
  • 1250 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

Typical external radiotherapy treatments consist in emitting beams of energetic photons targeting the tumor cells. Those photons are transported through the medium and interact with it. Such interactions affect the motion of the photons but they are typically weakly deflected which is not well modeled by standard numerical methods. The present work deals with the transport of photons in water. The motion of those particles is modeled by an entropy-based moment model, i.e., the \(M_1\) model. The main difficulty when constructing numerical approaches for photon beam modeling emerges from the significant difference of magnitude between the diffusion effects in the forward and transverse directions. A numerical method for the \(M_1\) equations is proposed with a special focus on the numerical diffusion effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Aregba-Driollet, R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 6, 1973–2004 (2000)

    Article  MathSciNet  Google Scholar 

  2. C. Berthon, P. Charrier, B. Dubroca, An HLLC scheme to solve the \({M_1}\) model of radiative transfer in two space dimensions. J. Sci. Comput. 31(3), 347–389 (2007)

    Article  MathSciNet  Google Scholar 

  3. J. Borwein, A. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29(2), 325–338 (1991)

    Article  MathSciNet  Google Scholar 

  4. C.M. Davisson, R.D. Evans, Gamma-ray absorption coefficients. Rev. Mod. Phys. (1952)

    Google Scholar 

  5. R. Duclous, B. Dubroca, M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 55, 3843–3857 (2010)

    Article  Google Scholar 

  6. B. Einfeldt, On godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988)

    Article  MathSciNet  Google Scholar 

  7. K.O. Friedrichs, P.D. Lax, Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. 68(8), 1686–1688 (1971)

    Article  MathSciNet  Google Scholar 

  8. A. Harten, P. Lax, B. Van Leer, On upstream differencing and Gudonov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  9. M. Junk, Maximum entropy for reduced moment problems. Math. Mod. Meth. Appl. S. 10(1001–1028), 2000 (1998)

    Google Scholar 

  10. D. Kershaw, Flux limiting nature’s own way. Technical report, Lawrence Livermore Laboratory (1976)

    Google Scholar 

  11. C.D. Levermore, Relating Eddington factors to flux limiters. J. Quant. Spectros. Radiat. Transf. 31, 149–160 (1984)

    Article  Google Scholar 

  12. C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  13. G.N. Minerbo, Maximum entropy Eddington factors. J. Quant. Spectros. Radiat. Transf. 20, 541–545 (1978)

    Article  Google Scholar 

  14. R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148(2), 292–317 (1998)

    Article  MathSciNet  Google Scholar 

  15. T. Pichard, G.W. Alldredge, S. Brull, B. Dubroca, M. Frank, An approximation of the \({M_2}\) closure: application to radiotherapy dose simulation. J. Sci. Comput. (to appear)

    Google Scholar 

  16. T. Pichard, D. Aregba-Driollet, S. Brull, B. Dubroca, M. Frank, Relaxation schemes for the \({M_1}\) model with space-dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 19, 168–191 (2016)

    Article  MathSciNet  Google Scholar 

  17. J. Schneider, Entropic approximation in kinetic theory. ESAIM-Math. Model. Num. 38(3), 541–561 (2004)

    Article  MathSciNet  Google Scholar 

  18. C.P. South, M. Partridge, P.M. Evans, A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med. Phys. 35(10), 4599–4611 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge K. Küpper and G. Birindelli for performing the Monte Carlo simulations used as reference results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pichard .

Editor information

Editors and Affiliations

Appendix : Computation of Bounds on the Eigenvalues of the Jacobian of the Flux

Appendix : Computation of Bounds on the Eigenvalues of the Jacobian of the Flux

Using rotational invariance and a normalization (see [11] for details), the closure (4) can also be rewritten under the form

$$\begin{aligned} \psi ^2= & {} \psi ^0 \left[ \frac{1-\chi }{2} Id + \frac{3\chi -1}{2} \frac{\psi ^1 \otimes \psi ^1}{|\psi ^1|^2} \right] , \end{aligned}$$
(17)

where the Eddington factor \(\chi \) is a scalar function of the scalar \(|\psi ^1|/\psi ^0\).

Consider that \(\psi ^1\) is colinear to \(e_1\) (otherwise just use a rotation to work in such a reference frame). Using the form (17) of the closure, the fluxes \(\mathbf {F_n}\) in the direction \(n\in S^2\) read

$$\begin{aligned} \varvec{\Psi }= & {} \left( \psi ^0, \ \psi ^1 \right) , \\ \forall n \in S^2, \qquad \mathbf {F_n}(\varvec{\Psi })= & {} \left( \psi ^1.n, \ \frac{\psi ^0}{2} \left[ (1-\chi )n + (3\chi -1) \frac{ (\psi ^1.n) \psi ^1 }{|\psi ^1|^2} \right] \right) , \end{aligned}$$

Chose a reference frame such that \(\psi ^1 = \psi _1^1 e_1\) with \(\psi _1^1 \ge 0\). In this reference frame, the spectrum of the Jacobian of the flux \(\mathbf {F_1}\) along the direction \(n=e_1\) (direction of the beam) and along \(n=e_2\) (direction normal to the beam) read

$$\begin{aligned} Sp\left( \partial _{\varvec{\Psi }}\left( \mathbf {F_1}(\varvec{\Psi })\right) \right)= & {} \left( \frac{3\chi -1}{2N_1^1}, \frac{\chi ' \pm \sqrt{\chi '^2 + 4 (\chi -N_1^1\chi ')}}{2} \right) ,\\ Sp\left( \partial _{\varvec{\Psi }}\left( \mathbf {F_2}(\varvec{\Psi }) \right) \right)= & {} \left( 0, \ \pm \sqrt{\frac{1-\chi + N_1^1\chi ' - \frac{3\chi -1}{2N_1^1} \chi ' }{2}} \right) . \end{aligned}$$

Now, in order to come back to the computations in any reference frame, one can simply use a rotation R such that \(R \psi ^1 = \psi _1^1 e_1\). One has

$$\begin{aligned} \begin{array}{rcl} \forall n\in S^2, \qquad \partial _{\varvec{\Psi }} \left( \mathbf {F_n}(\varvec{\Psi }) \right) &{}=&{} \partial _{(\psi ^0,R\psi _1^1e_1)} \left( \mathbf {F_n}(\psi ^0,R\psi _1^1e_1) \right) \\ &{}=&{} R_2 \partial _{\varvec{\Psi }} \mathbf {F_{R^Tn}}\left( \psi ^0,|\psi ^1|e_1\right) R_2^T, \end{array} \qquad R_2 = \left( \begin{array}{cccc} 1 &{} 0_{\mathbb {R}^3} \\ 0_{\mathbb {R}^3} &{} R \end{array} \right) . \end{aligned}$$

The spectrum of such a matrix can be bounded using the previous computations

$$\begin{aligned} \forall n\in S^2,&\quad&Sp\left( \partial _{\varvec{\Psi }} \left( \mathbf {F_n}(\varvec{\Psi }) \right) \right) \subset [ b_-, b_+ ], \end{aligned}$$
(18a)
$$\begin{aligned}&b_-(N^1,n) = (1-\theta ) \min S_t(|N^1|) + \theta \min S_n(|N^1|), \end{aligned}$$
(18b)
$$\begin{aligned}&b_+(N^1,n) = (1-\theta ) \max S_t(|N^1|) + \theta \max S_n(|N^1|), \qquad \theta = \frac{N^1.n}{|N^1|}. \end{aligned}$$

The exact bounds \(b_-\) and \(b_+\) of \(Sp\left( \partial _{\varvec{\Psi }} \mathbf {F_n}(\varvec{\Psi }) \right) \) could be computed analytically as the eigenvalues of the \(4\times 4\) matrix \(\partial _\Psi \left( \mathbf {F_n}(\Psi )\right) \). However, using such analytical formulae may introduce errors at the numerical level that may be non-negligible. Computing the bounds in (18) is easier, and they are sufficient for the present applications.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brull, S., Dubroca, B., Frank, M., Pichard, T. (2018). On the Transverse Diffusion of Beams of Photons in Radiation Therapy. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_35

Download citation

Publish with us

Policies and ethics