Skip to main content

Kinetic ES-BGK Models for a Multi-component Gas Mixture

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Abstract

We consider a multi-component mixture of inert gas in the kinetic regime by assuming that the total number of particles of each species remains constant. In this article, we shall illustrate our model for the case of two species. To account for thermal effects, we extend a BGK model based on the presence of a collision term for each possible interaction (Klingenberg et al., A consistent kinetic model for a two-component mixture with an application to plasma. Kinet Relat Models 10:444–465, 2017, [19]) by including ES-BGK effects. We prove consistency of the extended model like conservation properties, positivity of all temperatures, H-theorem, and convergence to a global equilibrium in the shape of a global Maxwell distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling. Comput. Math. Appl. 55, 1392–1407 (2008)

    Article  MathSciNet  Google Scholar 

  2. P. Andries, B. Perthame, The ES-BGK Model Equation With Correct Prandtl Number, AIP Conference Proceedings, vol. 30 (2001)

    Google Scholar 

  3. P. Andries, P. Le Tallec, J. Perlat, B. Perthame, The Gaussian -BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B - Fluids 19, 813–830 (2000)

    Article  MathSciNet  Google Scholar 

  4. P. Andries, K. Aoki, B. Perthame, A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)

    Article  MathSciNet  Google Scholar 

  5. S. Brull, An ellipsoidal statistical model for gas mixtures. Commun. Math. Sci. 8, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  6. M. Bennoune, M. Lemou, L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys. 227, 3781–3803 (2008)

    Article  MathSciNet  Google Scholar 

  7. F. Bernard, A. Iollo, G. Puppo, Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids. J. Sci. Comput. 65, 735–766 (2015)

    Article  MathSciNet  Google Scholar 

  8. C. Cercignani, The Boltzmann Equation and its Applications (Springer, Berlin, 1975)

    Google Scholar 

  9. C. Cercignani, Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  10. A. Crestetto, N. Crouseilles, M. Lemou, Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinet. Relat. Models 5, 787–816 (2012)

    Article  MathSciNet  Google Scholar 

  11. G. Dimarco, L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  Google Scholar 

  12. F. Filbet, S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 20, 7625–7648 (2010)

    Article  MathSciNet  Google Scholar 

  13. E.P. Gross, M. Krook, Model for collision processes in gases: small-amplitude oscillations of charged two-component systems. Phys. Rev. 3, 593 (1956)

    Article  Google Scholar 

  14. M. Groppi, S. Monica, G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture. EPL: Eur. Lett. 96, 64002 (2011)

    Article  Google Scholar 

  15. B. Hamel, Kinetic model for binary gas mixtures. Phys. Fluids 8, 418–425 (1965)

    Article  Google Scholar 

  16. L. Holway, New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Article  Google Scholar 

  17. J.H. Jeans, The persistence of molecular velocities in the kinetic theory of gases. Philos. Mag. 6 8(48), 700–703 (1904)

    Google Scholar 

  18. J.H. Jeans, The Dynamical Theory of Gases (Cambridge University Press, Cambridge, 1916)

    Google Scholar 

  19. C. Klingenberg, M. Pirner, G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma. Kinet. Relat. Models 10, 444–465 (2017)

    Article  MathSciNet  Google Scholar 

  20. S. Pieraccini, G. Puppo, Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32, 1–28 (2007)

    Article  MathSciNet  Google Scholar 

  21. S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency. J. Differ. Equ. 259, P6009–6037 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klingenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klingenberg, C., Pirner, M., Puppo, G. (2018). Kinetic ES-BGK Models for a Multi-component Gas Mixture. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_15

Download citation

Publish with us

Policies and ethics