Skip to main content

The Cauchy Problem for the Maxwell–Schrödinger System with a Power-Type Nonlinearity

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems I (HYP 2016)

Abstract

We discuss some results on the Maxwell–Schrödinger system with a nonlinear power-like potential. We prove the local well-posedness in \(H^2(\mathbb {R}^3)\times H^{3/2}(\mathbb {R}^3)\) and the global existence of finite energy weak solutions. Then we apply these results to the analysis of finite energy weak solutions for Quantum Magnetohydrodynamic systems. Our interest in this problem is motivated by some models arising in quantum plasma dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Antonelli, M. D’Amico, P. Marcati, Nonlinear Maxwell–Schrödinger system and quantum magneto-hydrodynamics in 3-D, Accepted Comm. Math. Sci

    Google Scholar 

  2. P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287(2), 657–686 (2009)

    Article  MathSciNet  Google Scholar 

  3. P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203, 499–527 (2012)

    Article  MathSciNet  Google Scholar 

  4. I. Bejenaru, D. Tataru, Global well-posedness in the energy space for the Maxwell–Schrödinger system. Commun. Math. Phys. 288(1), 145–198 (2009)

    Article  Google Scholar 

  5. S. Eliezer, P. Norreys, J.T. Mendona, Effects of Landau quantization on the equations of state in intense laser plasma interactions with strong magnetic fields. Phys. Plasmas 12, 052115 (2005)

    Article  Google Scholar 

  6. R.P. Feynman, R.B. Leighton, M. Sands, The Schrödinger equation in a classical context: a seminar on superconductivity (Chapter 21), in The Feynman Lectures on Physics, Vol III Quantum Mechanics (Addison-Wesley Publishing Co., Inc, Reading, Mass. London, 1995)

    Google Scholar 

  7. Y. Guo, K. Nakamitsu, W. Strauss, Global finite-energy solutions to the Maxwell–Schrödinger system. Commun. Math. Phys. 170, 181–196 (1995)

    Article  Google Scholar 

  8. F. Haas, A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12, 062117 (2005)

    Article  Google Scholar 

  9. F. Haas, Quantum Plasmas: An hydrodynamic Approach (Springer, New York)

    Google Scholar 

  10. T. Kato, Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo Sect. I(17), 241–258 (1970)

    MathSciNet  MATH  Google Scholar 

  11. T. Kato, Linear evolution equations of “hyperbolic" type II. J. Math. Soc. Japan 25, 648–666 (1973)

    Article  MathSciNet  Google Scholar 

  12. F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(3), 489–507 (1978)

    Google Scholar 

  13. F. Murat, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1), 69–102 (1981)

    Google Scholar 

  14. M. Nakamura, T. Wada, Local well-posedness for the Maxwell–Schrödinger equation. Math. Ann. 332(3), 565–604 (2005)

    Article  MathSciNet  Google Scholar 

  15. M. Nakamura, T. Wada, Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations. Commun. Math. Phys. 276, 315–339 (2007)

    Article  Google Scholar 

  16. L.I. Schiff, Quantum Mechanics, 2nd edn. (McGraw-Hill, New-York, 1955)

    MATH  Google Scholar 

  17. P.K. Shukla, B. Eliasson, Nonlinear aspects of quantum plasma physics. Phys. Usp. 53, 51–76 (2010)

    Article  Google Scholar 

  18. P.K. Shukla, B. Eliasson, Novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007 (2012)

    Article  Google Scholar 

  19. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Research Notes in Mathematics, vol. 39, Pitman, Boston, Mass-London (1979), pp. 136–212

    Google Scholar 

  20. L. Tartar, in An Introduction to Navier–Stokes Equation and Oceanography. Lecture Notes of the Unione Matematica Italiana, vol. 1 (Springer, Berlin, UMI, Bologna, 2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D’Amico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonelli, P., D’Amico, M., Marcati, P. (2018). The Cauchy Problem for the Maxwell–Schrödinger System with a Power-Type Nonlinearity. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_6

Download citation

Publish with us

Policies and ethics