Skip to main content

Effective Boundary Conditions for Turbulent Compressible Flows over a Riblet Surface

  • Conference paper
  • First Online:
Book cover Theory, Numerics and Applications of Hyperbolic Problems I (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 236))

  • 1184 Accesses

Abstract

In Achdou et al. (J Comp Phys 147:187–218, 1998, [9]), Anderson (Hypersonic and High Temperature Gas Dynamics, 1989, [10]), a numerical scheme is developed to accurately capture the microscale effects of periodic spanwise roughness at essentially the cost of solving twice a laminar problem on a smooth domain at affordable resolution. In the present work, this methodology is extended to the turbulent regime modeled by the compressible Reynolds-averaged Navier–Stokes (RANS) equations using a one-equation model. As an application, a subsonic flow over a flat plate with partially embedded periodic roughness, i.e., riblets, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Achdou, O. Pironneau, F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147, 187–218 (1998)

    Article  MathSciNet  Google Scholar 

  2. J.D. Anderson, Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Series in Aeronautical and Aerospace Engineering (1989)

    Google Scholar 

  3. W. Bangerth, R. Hartmann, G. Kanschat, deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Google Scholar 

  4. D.W. Bechert, M. Bruse, W. Hage, R. Meyer, Biological surfaces and their technological application—laboratory and flight experiments on drag reduction and separation control. AIAA Paper 97-1960 (1997)

    Google Scholar 

  5. A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  6. J. Boris, F. Grinstein, E. Oran, R. Kolbe, New insights into large Eddy simulation. Fluid Dyn. Res. 10(4–6), 199 (1992)

    Article  Google Scholar 

  7. F. Bramkamp, Ph Lamby, S. Müller, An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comp. Phys. 197(2), 460–490 (2004)

    Article  MathSciNet  Google Scholar 

  8. M. Bruse, D.W. Bechert, J.G.T.V. der Hoeven, W. Hage, G. Hoppe, in Near-Wall Turbulent Flows, Experiments with Conventional and with Novel Adjustable Drag-reducing Surfaces, ed. by R.M. So, C.G. Speziale, B.E. Launder (Elsevier, Amsterdam, The Netherlands, 1993), pp. 719–738

    Google Scholar 

  9. G. Deolmi, W. Dahmen, S. Müller, Effective boundary conditions for compressible flows over rough surface. Math. Models Methods Appl. Sci. 25, 1257–1297 (2015)

    Article  MathSciNet  Google Scholar 

  10. G. Deolmi, W. Dahmen, S. Müller, Effective boundary conditions: a general strategy and application to compressible flows over rough boundaries. Commun. Comput. Phys. 21(2), 358–400 (2017)

    Article  MathSciNet  Google Scholar 

  11. Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications (Springer, 2009)

    Google Scholar 

  12. W.E.B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Google Scholar 

  13. W.E.B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering. Lecture Notes Computer Sciences Engineering, vol. 44. (Springer, Berlin, 2005), pp. 89–110

    Google Scholar 

  14. E. Fares, W. Schröder, A general one-equation turbulence model for free shear andwall-bounded flows. Flow Turbul. Combust. 73(3–4), 187–215 (2005)

    Article  Google Scholar 

  15. E. Friedmann, The optimal shape of riblets in the viscous sublayer. J. Math. Fluid Mech. 12, 243–265 (2010)

    Article  MathSciNet  Google Scholar 

  16. E. Friedmann, T. Richter, Optimal microstructures drag reducing mechanism of riblets. J. Math. Fluid Mech. 13, 429–447 (2011)

    Article  MathSciNet  Google Scholar 

  17. M. Itoh, S. Tamano, R. Igushi, K. Yokota, N. Akino, R. Hino, S. Kubo, Turbulent drag reduction by the seal fur surface. Phys. Fluids 18, 065102 (2006)

    Article  Google Scholar 

  18. W. Jaeger, A. Mikelic, On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  MathSciNet  Google Scholar 

  19. W. Jaeger, A. Mikelic, Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232, 429–455 (2003)

    Article  MathSciNet  Google Scholar 

  20. V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1995)

    MATH  Google Scholar 

  21. J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34 (Springer-Verlag, New York-Heidelberg-Berlin, 1981)

    Google Scholar 

  22. S. Klumpp, M. Meinke, W. Schröder, Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010)

    Article  Google Scholar 

  23. S.-J. Lee, Y.-G. Jang, Control of flow around a NACA 0012 airfoil with a micro-riblet film. J. Fluids Struct. 20, 659–672 (2005)

    Article  Google Scholar 

  24. M.-S. Liou, C. Steffen, A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  Google Scholar 

  25. M. Meinke, W. Schröder, E. Krause, T. Rister, A comparison of second-and sixth-order methods for large-eddy simulations. Comp. Fluids 31(4), 695–718 (2002)

    Article  Google Scholar 

  26. W.-E. Reif, A. Dinkelacker, Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 164, 184–187 (1982)

    Google Scholar 

  27. B. Roidl, M. Meinke, W. Schröder, A zonal RANS/LES method for compressible flows. Comp. Fluids 67, 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  28. P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA paper 92-0439 (1992)

    Google Scholar 

  29. L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana, vol. 7. (Springer, Berlin; UMI, Bologna, 2009)

    Google Scholar 

  30. P.R. Viswanath, Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571–600 (2002)

    Article  Google Scholar 

  31. D.C. Wilcox, Turbulence Modeling for CFD, 1st edn. (DCW Industries Inc, La Canada CA, 1993)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the German Research Council (DFG) within the DFG Research Unit FOR 1779, by grant DA 117/22-1 and the DFG Collaborative Research Center SFB-TR-40, TP A1, and by the Excellence Initiative of the German Federal and State Governments (RWTH Aachen Distinguished Professorship, Graduate School AICES). Furthermore, the computing resources made available by the High-Performance Computing Center in Stuttgart (HLRS) along with the continued support are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Deolmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deolmi, G., Dahmen, W., Müller, S., Albers, M., Meysonnat, P.S., Schröder, W. (2018). Effective Boundary Conditions for Turbulent Compressible Flows over a Riblet Surface. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_36

Download citation

Publish with us

Policies and ethics