Skip to main content

A Cell-Centered Lagrangian Method for 2D Ideal MHD Equations

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems I (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 236))

Abstract

In this work, we present a Lagrangian cell-centered MHD scheme on unstructured quadrilateral grid which need neither corrector steps nor modifications to the original ideal MHD equations but preserve exactly the divergence constraint of the magnetic field. All primary variables in this scheme are cell centered. In order to compute the numerical fluxes through the cell interfaces, we introduce one velocity for each vertex, one subcell force and one subcell magnetic flux for each subcell of the mesh. We construct a nodal solver to compute the vertex velocity and the subcell force. The subcell magnetic fluxes in our scheme are assumed to remain unchanged all the time which guarantees the exact preservation of the divergence-free constraint. Several numerical tests are presented to demonstrate the robustness and the accuracy of this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.U. Brackbill, D.C. Barnes, The effect of nonzero divB on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)

    Google Scholar 

  2. D.S. Balsara, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151, 149–184 (2004)

    Article  Google Scholar 

  3. D.S. Balsara, J. Kim, A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys. J. 602, 1079–1090 (2004)

    Article  Google Scholar 

  4. D.S. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149(2), 270–292 (1999)

    Article  MathSciNet  Google Scholar 

  5. W. Dai, P.R. Woodward, A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics. SIAM J. Sci. Comput. 18(4), 957–981 (1997)

    Article  MathSciNet  Google Scholar 

  6. A. Dedner, F. Kemm, D. Kr\(\ddot{o}\)er, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  Google Scholar 

  7. C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659–677 (1989)

    Article  Google Scholar 

  8. M. Fey, M. Torrilhon, A constrained transport upwind scheme for divergence-free advection, ed. by T.Y. Hou, E. Tadmor. Hyperbolic Problems: Theory, Numerics, and Applications, (Springer, Heidelberg, 2003), pp. 529–538

    Chapter  Google Scholar 

  9. Jianqiang Han, Huazhong Tang, An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys. 220, 791–812 (2007)

    Article  MathSciNet  Google Scholar 

  10. S.-T. Li, An HLLC Riemann solver for magnetohydrodynamics. J. Comput. Phys. 203, 344–357 (2005)

    Article  MathSciNet  Google Scholar 

  11. P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia, A cell-centered Lagrangian scheme for two dimensional compressible flow problems. SIAM J. Sci. Comput. 29(4), 1781–1824 (2007)

    Article  MathSciNet  Google Scholar 

  12. K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimensions), ICASE Report No. 94-24, Langley, VA (1994)

    Google Scholar 

  13. J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28, 1766–1797 (2006)

    Article  MathSciNet  Google Scholar 

  14. D.S. Ryu, F. Miniati, T.W. Jones, A. Frank, A divergence-free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509(1), 244–255 (1998)

    Article  Google Scholar 

  15. J.M. Stone, M.L. Norman, ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions, II: the magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. 80, 791–818 (1992)

    Article  Google Scholar 

  16. R. E. Tipton, A 2D lagrange MHD code, Preprint UCRL-94277 (Lawrence Livermore National Laboratory, 1986)

    Google Scholar 

  17. G. Tóth, The \(\nabla \cdot B=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11271053, 11671049, 91330107) and Defense Industrial Technology Development Program (B1520133015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihuan Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, Z. (2018). A Cell-Centered Lagrangian Method for 2D Ideal MHD Equations. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_33

Download citation

Publish with us

Policies and ethics